The modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics
暂无分享,去创建一个
Olimpia Lombardi | Juan Sebastian Ardenghi | Mario Castagnino | J. S. Ardenghi | O. Lombardi | M. Castagnino
[1] Sunny Y. Auyang,et al. How Is Quantum Field Theory Possible , 1995 .
[2] Shiro Ishikawa,et al. A New Interpretation of Quantum Mechanics , 2011, J. Quantum Inf. Sci..
[3] 井上 研三. H. Georgi: Lie Algebras in Particle Physics; From Isospin to Unified Theories, Benjamin/Cummings, Advanced Book Program, Massachusetts, 1982, xxiii+256ページ, 24.5×17cm, 5,650円(Frontiers in Physics; A Lecture Note and Reprint Series, No. 54). , 1982 .
[4] Rob Clifton,et al. Independently Motivating the Kochen—Dieks Modal Interpretation of Quantum Mechanics , 1995, The British Journal for the Philosophy of Science.
[5] Pieter E. Vermaas,et al. The Modal Interpretation of Quantum Mechanics , 1998 .
[6] C. cohen-tannoudji,et al. Quantum Mechanics: , 2020, Fundamentals of Physics II.
[7] J. Earman. Curie's Principle and spontaneous symmetry breaking , 2004 .
[8] Dennis Dieks,et al. The Formalism of Quantum Theory: An Objective Description of Reality? , 1988 .
[9] Arthur Fine. Probability and the Interpretation of Quantum Mechanics* , 1973, The British Journal for the Philosophy of Science.
[10] On Symplectic Reduction in Classical Mechanics , 2005, physics/0507194.
[11] O. Lombardi,et al. The cosmological origin of time asymmetry , 2002, quant-ph/0211162.
[12] Harvey R. Brown,et al. The Galilean covariance of quantum mechanics in the case of external fields , 1999 .
[13] Olimpia Lombardi,et al. Quantum Mechanics: Modal Interpretation and Galilean Transformations , 2009 .
[14] S. Bose. The galilean group in 2+1 space-times and its central extension , 1995 .
[15] J. Earman. Laws, Symmetry, and Symmetry Breaking: Invariance, Conservation Principles, and Objectivity , 2004, Philosophy of Science.
[16] Katherine Brading,et al. Symmetries and invariances in classical physics , 2005 .
[17] K. Brading,et al. Symmetries in physics: philosophical reflections , 2003, quant-ph/0301097.
[18] A. Raczyński,et al. Symposium on the foundations of modern physics : edited by P. Lahti and P. Mittelstaedt, World Scientific Publishing Co. Pte. Ltd., Singapore 1985 , 1986 .
[19] A Bicycle Built for Two: The Galilean and U(1) Gauge Invariance of the Schr\"odinger Field , 2008, 0802.2401.
[20] Albert Einstein,et al. The Principle of Relativity , 2014 .
[21] L. Ballentine. Quantum mechanics : a modern development , 1998 .
[22] Mario Bunge,et al. Philosophy of Physics , 1972 .
[23] H. Georgi. Lie Algebras in Particle Physics: From Isospin to Unified Theories , 1994 .
[24] H. Minkowski,et al. Space and time , 1952 .
[25] N L Harshman,et al. Galilean and dynamical invariance of entanglement in particle scattering. , 2007, Physical review letters.
[26] Robert Nozick. Invariances: The Structure of the Objective World , 2001 .
[27] E. Specker,et al. The Problem of Hidden Variables in Quantum Mechanics , 1967 .
[28] M. Suárez,et al. Are Sharp Values of Observables always Objective Elements of Reality , 1998 .
[29] Pieter E. Vermaas,et al. The modal interpretation of quantum mechanics and its generalization to density operators , 1995 .
[30] Invariance, Symmetry and Meaning , 2000 .
[31] V. Colussi,et al. Galilean and U(1)-gauge symmetry of the Schrödinger field , 2008 .
[32] J. M. Lévy-Leblond,et al. The pedagogical role and epistemological significance of group theory in quantum mechanics , 1974 .
[33] Olimpia Lombardi,et al. A modal-Hamiltonian interpretation of quantum mechanics , 2006, quant-ph/0610121.