Recent advances in modeling swash zone dynamics: Influence of surf‐swash interaction on nearshore hydrodynamics and morphodynamics

The role of the swash zone in influencing the whole nearshore dynamics is reviewed with a focus on the interaction between surf and swash zone processes. Local and global hydromorphodynamic phenomena are discussed in detail, and a description of the overall swash zone operation is given. The effects of swash zone boundary conditions are highlighted, together with the importance of surf zone boundary conditions. Major emphasis is placed on illustrating the interactions of various hydrodynamic modes which, in turn, control the swash and surf zone morphology. Finally, methods to account for swash zone processes in coastal models with different temporal and spatial resolutions are proposed.

[1]  T. Baldock,et al.  Field observations of instantaneous water slopes and horizontal pressure gradients in the swash-zone , 2006 .

[2]  T. Baldock,et al.  Beachface morphology and surf beat sediment transport in laboratory scale surf and swash zones , 2024, Journal of Coastal Research.

[3]  Tom E. Baldock,et al.  Low frequency swash motion induced by wave grouping , 1997 .

[4]  Gerhard Masselink,et al.  Swash infiltration‐exfiltration and sediment transport , 1998 .

[5]  T. Baldock,et al.  Beach face and berm morphodynamics fronting a coastal lagoon , 2006 .

[6]  Ying Li Non-breaking and breaking solitary wave run-up , 2000, Journal of Fluid Mechanics.

[7]  G. Coco,et al.  Test of self-organization in beach cusp formation , 2003 .

[8]  P. Nielsen,et al.  Wave Runup Distributions on Natural Beaches , 1991 .

[9]  T. Baldock,et al.  Swash overtopping and sediment overwash on a truncated beach , 2005 .

[10]  Atle Jensen,et al.  An experimental study of wave run-up at a steep beach , 2003, Journal of Fluid Mechanics.

[11]  H. Yeh Tsunami bore runup , 1991 .

[12]  Paul Russell,et al.  Hydrodynamics and Cross-Shore Sediment Transport in the Swash-Zone of Natural Beaches: A Review , 2000 .

[13]  G. B. Whitham,et al.  On the propagation of shock waves through regions of non-uniform area or flow , 1958, Journal of Fluid Mechanics.

[14]  M. Hughes Application of a Non-Linear Shallow Water Theory to Swash Following Bore Collapse on a Sandy Beach , 1992 .

[15]  D. King Studies in Oscillatory Flow Bedload Sediment Transport , 1991 .

[16]  D. Horn Measurements and modelling of beach groundwater flow in the swash-zone: a review , 2006 .

[17]  T. Baldock,et al.  The influence of seaward boundary conditions on swash zone hydrodynamics , 2007 .

[18]  On the mass and momentum transfer between short gravity waves and larger-scale motions , 1971 .

[19]  P. Russell,et al.  Suspended sediment transport mechanisms in high-energy swash , 1999 .

[20]  D. H. Peregrine,et al.  Surf and run-up on a beach: a uniform bore , 1979, Journal of Fluid Mechanics.

[21]  T. Hsu,et al.  A numerical and field study on inner-surf and swash sediment transport , 2006 .

[22]  D. Huntley,et al.  A universal form for shoreline run‐up spectra? , 1977 .

[23]  T. Baldock Long wave generation by the shoaling and breaking of transient wave groups on a beach , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[24]  J. A. Battjes,et al.  Shoaling of subharmonic gravity waves , 2004 .

[25]  K. Bodge A Literature Review of the Distribution of Longshore Sediment Transport Across the Surf Zone , 1989 .

[26]  M. Brocchini,et al.  Experimental validation and characterization of mean swash zone boundary conditions , 2003 .

[27]  R. Holman,et al.  Swash zone sediment suspension and transport and the importance of bore‐generated turbulence , 2000 .

[28]  N. Matsunaga,et al.  The steady and unsteady backwash vortices , 1983, Journal of Fluid Mechanics.

[29]  T. Baldock,et al.  General solutions for the initial run-up of a breaking tsunami front , 2005 .

[30]  Hajime Mase,et al.  Spectral characteristics of random wave run-up , 1988 .

[31]  M. Brocchini,et al.  Swash zone boundary conditions for long-wave models , 2005 .

[32]  Joseph Calantoni,et al.  Role of pressure gradients in sheet flow of coarse sediments under sawtooth waves , 2006 .

[33]  D. H. Peregrine,et al.  Swash overtopping a truncated plane beach , 2001, Journal of Fluid Mechanics.

[34]  A. Hogg,et al.  On the transport of suspended sediment by a swash event on a plane beach , 2005 .

[35]  D. Evans,et al.  Suspended sediment transport in the swash zone of a dissipative beach , 2005 .

[36]  Hilary F. Stockdon,et al.  Empirical parameterization of setup, swash, and runup , 2006 .

[37]  Robert A. Holman,et al.  Wave run-up on a high-energy dissipative beach , 2004 .

[38]  Barbara Zanuttigh,et al.  Modelling of waves and currents around submerged breakwaters , 2005 .

[39]  T. G. Drake,et al.  Discrete particle model for sheet flow sediment transport in the nearshore , 2001 .

[40]  Robert A. Holman,et al.  Extreme value statistics for wave run-up on a natural beach , 1986 .

[41]  D. Peregrine Equations for Water Waves and the Approximation behind Them , 1972 .

[42]  Harry Yeh,et al.  Maximum fluid forces in the tsunami runup zone , 2006 .

[43]  K. T. Holland,et al.  The statistical distribution of swash maxima on natural beaches , 1993 .

[44]  T. Baldock,et al.  Eulerian flow velocities in the swash zone: Field data and model predictions , 2004 .

[45]  E. Cowen,et al.  Particle image velocimetry measurements within a laboratory-generated swash zone , 2003 .

[46]  S. Longo,et al.  Turbulence experiments in the swash zone , 2001 .

[47]  D. Peregrine Surface Shear Waves , 1974 .

[48]  S. Elgar,et al.  Observations of swash zone velocities: A note on friction coefficients , 2004 .

[49]  T. Baldock,et al.  Simulation and prediction of swash oscillations on a steep beach , 1999 .

[50]  Gerhard Masselink,et al.  Field investigation of sediment transport in the swash zone , 1998 .

[51]  M. Longuet-Higgins,et al.  Radiation stresses in water waves; a physical discussion, with applications , 1964 .

[52]  P. Cowell,et al.  Adjustment of Reflective Beaches to Waves , 1987 .

[53]  Nobuhiro Matsunaga,et al.  The backwash vortex , 1980, Journal of Fluid Mechanics.

[54]  Ian L Turner,et al.  Shoreline Definition and Detection: A Review , 2005 .

[55]  Gerhard Masselink,et al.  Swash-zone morphodynamics , 2006 .

[56]  D. Peregrine,et al.  The generation of low frequency waves by a single wave group incident on a beach: numerical model , 1995 .

[57]  William Hobensack Numerical prediction of wave transformation, velocity, and bottom stress in the inner surf and swash zone , 2001 .

[58]  Michael G. Hughes,et al.  Friction factors for wave uprush , 1995 .

[59]  Inigo J. Losada,et al.  Turbulence in the swash and surf zones: a review , 2002 .

[60]  J. G. Griffin,et al.  Direct measurements of bed stress under swash in the field , 2004 .

[61]  D. Myrhaug,et al.  Bottom friction in random waves plus current flow , 2001 .

[62]  P. Nielsen Shear stress and sediment transport calculations for swash zone modelling , 2002 .

[63]  J. P. Sierra,et al.  Sediment Transport Numerical Modelling in the Swash Zone , 2006 .

[64]  Hunt,et al.  Design of Seawalls and Breakwaters , 1959 .

[65]  M. Brocchini Integral swash-zone models , 2006 .

[66]  Bradley D. Johnson,et al.  Probability distribution of surface elevation in surf and swash zones , 1998 .

[67]  Jurjen A. Battjes,et al.  RUN-UP DISTRIBUTIONS OF WAVES BREAKING ON SLOPES , 1971 .

[68]  M. Barnes,et al.  Field Observations of Instantaneous Cross-Shore Free Surface Profiles and Flow Depths in the Swash Zone , 2006 .

[69]  E. Toro Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .

[70]  Harry Yeh,et al.  Experimental study of bore run-up , 1989, Journal of Fluid Mechanics.

[71]  T. Baldock,et al.  Hydrodynamics and sediment transport in the swash zone: a review and perspectives , 2002 .

[72]  R. E. Meyer,et al.  Climb of a bore on a beach Part 3. Run-up , 1963, Journal of Fluid Mechanics.

[73]  Hervé Capart,et al.  Riemann wave description of erosional dam-break flows , 2002, Journal of Fluid Mechanics.

[74]  Bradley D. Johnson,et al.  Sand suspension, storage, advection, and settling in surf and swash zones , 2001 .

[75]  R. Deigaard,et al.  Effect of externally generated turbulence on wave boundary layer , 2003 .

[76]  Edward B. Thornton,et al.  Observations of surf beat , 1985 .

[77]  Tom E. Baldock,et al.  Direct bed shear stress measurements in laboratory swash , 2007 .

[78]  H. Mase Frequency down-shift of swash oscillations compared to incident waves , 1995 .

[79]  D. Huntley,et al.  Long–wave forcing by the breaking of random gravity waves on a beach , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[80]  Ge Wei,et al.  Generation of waves in Boussinesq models using a source function method , 1999 .

[81]  Maurizio Brocchini,et al.  Integral flow properties of the swash zone and averaging , 1996, Journal of Fluid Mechanics.

[82]  The Boundary Value Problem for the Nonlinear Shallow Water Equations , 2007 .

[83]  J. Kamphuis,et al.  A SHEAR PLATE FOR USE IN OSCILLATORY FLOW , 1973 .

[84]  K. Holland,et al.  Estimating swash zone friction coefficients on a sandy beach , 2001 .

[85]  Scott F. Bradford Godunov-Based Model for Nonhydrostatic Wave Dynamics , 2005 .

[86]  M. Brocchini Eulerian and Lagrangian aspects of the longshore drift in the surf and swash zones , 1997 .

[87]  K. T. Holland,et al.  Wavenumber-frequency structure of infragravity swash motions , 1999 .

[88]  J. R. Duncan The effects of water table and tide cycle on swash-backwash sediment distribution and beach profile development , 1964 .

[89]  Integral flow properties of the swash zone and averaging. Part 2. Shoreline boundary conditions for wave-averaged models , 2002, Journal of Fluid Mechanics.

[90]  M. Brocchini,et al.  Integral properties of the swash zone and averaging. Part 3. Longshore shoreline boundary conditions for wave-averaged nearshore circulation models , 2007, Journal of Fluid Mechanics.