Semivariogram methods for modeling Whittle–Matérn priors in Bayesian inverse problems

We present a detailed mathematical description of the connection between Gaussian processes with covariance operators defined by the Matern covariance function and Gaussian processes with precision (inverse-covariance) operators defined by the Green's functions of a class of elliptic stochastic partial differential equations (SPDEs). We will show that there is an equivalence between these two Gaussian processes when the domain is infinite -- for us, $\mathbb{R}$ or $\mathbb{R}^2$ -- which breaks down when the domain is finite due to the effect of boundary conditions on Green's functions of PDEs. We show how this connection can be re-established using extended domains. We then introduce the semivariogram method for obtaining point estimates of the Matern covariance hyper-parameters, which specifies the Gaussian prior needed for stabilizing the inverse problem. We implement the method on one- and two-dimensional image deblurring test cases to show that it works on practical examples. Finally, we define a Bayesian hierarchical model, assuming hyper-priors on the precision and Matern hyper-parameters, and then sample from the resulting posterior density function using Markov chain Monte Carlo (MCMC), which yields distributional approximations for the hyper-parameters.

[1]  Firoozeh Rivaz,et al.  Empirical Bayes spatial prediction using a Monte Carlo EM algorithm , 2009, Stat. Methods Appl..

[2]  Deepak K. Agarwal,et al.  Slice sampling for simulation based fitting of spatial data models , 2005, Stat. Comput..

[3]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[4]  Michael Holst,et al.  Green's Functions and Boundary Value Problems: Stakgold/Green's Functions , 2011 .

[5]  M. Kwasnicki,et al.  Ten equivalent definitions of the fractional laplace operator , 2015, 1507.07356.

[6]  Ajoy Ghatak,et al.  The Dirac Delta Function , 2004 .

[7]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[8]  Stig Larsson,et al.  Introduction to stochastic partial differential equations , 2008 .

[9]  Petteri Piiroinen,et al.  Constructing continuous stationary covariances as limits of the second-order stochastic difference equations , 2013 .

[10]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[11]  Stanisław Saks,et al.  Theory of the Integral , 2011 .

[12]  Larry C. Andrews,et al.  Special Functions Of Mathematics For Engineers , 2022 .

[13]  Lassi Roininen,et al.  Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography , 2014 .

[14]  Implementing an anisotropic and spatially varying Matérn model covariance with smoothing filters , 2014 .

[15]  G. Casella An Introduction to Empirical Bayes Data Analysis , 1985 .

[16]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[17]  M. Girolami,et al.  Hyperpriors for Matérn fields with applications in Bayesian inversion , 2016, Inverse Problems & Imaging.

[18]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[19]  P. Guttorp,et al.  Studies in the history of probability and statistics XLIX On the Matérn correlation family , 2006 .

[20]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach , 2011 .

[21]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[22]  B. Minasny,et al.  The Matérn function as a general model for soil variograms , 2005 .

[23]  Martin T. Wells,et al.  Exploring an Adaptive Metropolis Algorithm , 2010 .

[24]  G. Teschl,et al.  On Fourier Transforms of Radial Functions and Distributions , 2011, 1112.5469.

[25]  Elisabeth Ullmann,et al.  Analysis of Boundary Effects on PDE-Based Sampling of Whittle-Matérn Random Fields , 2018, SIAM/ASA J. Uncertain. Quantification.

[26]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[27]  J. Bardsley,et al.  Dealing with boundary artifacts in MCMC-based deconvolution , 2015 .

[28]  Mark Girolami,et al.  Posterior inference for sparse hierarchical non-stationary models , 2018, Comput. Stat. Data Anal..

[29]  Per Christian Hansen,et al.  Rank-Deficient and Discrete Ill-Posed Problems , 1996 .

[30]  Mark S. Gockenbach,et al.  Partial Differential Equations - Analytical and Numerical Methods (2. ed.) , 2011 .

[31]  L. Debnath Tables of Integral Transforms , 2012 .

[32]  Paul M. Goldbart,et al.  Mathematics for Physics: A Guided Tour for Graduate Students , 2009 .

[33]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[34]  Roger Woodard,et al.  Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.

[35]  William G. Jacoby Loess: a nonparametric, graphical tool for depicting relationships between variables , 2000 .

[36]  Chris Chatfield,et al.  Statistical Methods for Spatial Data Analysis , 2004 .

[37]  T. Yokoyama,et al.  The Hankel transform , 2014 .

[38]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[39]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[40]  C. Vogel Computational Methods for Inverse Problems , 1987 .

[41]  A. Wood,et al.  Simulation of Stationary Gaussian Processes in [0, 1] d , 1994 .

[42]  K. Haskard,et al.  An anisotropic Matern spatial covariance model: REML estimation and properties. , 2007 .