Modelling of Random Processes using Orthonormal Bases
暂无分享,去创建一个
[1] K. Berk. Consistent Autoregressive Spectral Estimates , 1974 .
[2] P. V. D. Hof,et al. A generalized orthonormal basis for linear dynamical systems , 1995, IEEE Trans. Autom. Control..
[3] M. Nimchek. Banach spaces of analytic functions , 1996 .
[4] J. Walsh. Interpolation and Approximation by Rational Functions in the Complex Domain , 1935 .
[5] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[6] M. Morf,et al. Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.
[7] P. Regalia. Adaptive IIR Filtering in Signal Processing and Control , 1994 .
[8] P. Heywood. Trigonometric Series , 1968, Nature.
[9] E. L. Lehmann,et al. Theory of point estimation , 1950 .
[10] P. Whittle,et al. Estimation and information in stationary time series , 1953 .
[11] O. Morg. A Unifying Construction of Orthonormal Bases for System Identification , 1997 .
[12] Brett Ninness,et al. Orthonormal Bases for Geometric Interpretations of the Frequency Response Estimation Problem , 1994 .
[13] L. Ljung,et al. Asymptotic properties of black-box identification of transfer functions , 1985 .
[14] B. Wahlberg. System identification using Laguerre models , 1991 .
[15] B. Wahlberg. System identification using Kautz models , 1994, IEEE Trans. Autom. Control..
[16] Paul W. Broome,et al. Discrete Orthonormal Sequences , 1965, JACM.
[17] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .