A review of thermo-mechanical fatigue behaviour in polycrystalline nickel superalloys for turbine disc applications

Abstract Within the gas turbine engine, the high transient thermal stresses resulting from throttle movement from idle to high settings give rise to the phenomenon of thermo-mechanical fatigue (TMF). These effects have been widely explored for turbine blade materials, typically single crystal nickel alloys. More recently however, a combination of thinner disc rims and further increases in turbine entry temperature has led to a situation where TMF in disc materials cannot be ignored. Turbine discs will usually be manufactured from polycrystalline nickel alloys, and as such it is now considered critical that TMF effects in this system of alloys is fully characterised. The current paper seeks to summarise the published work on TMF in polycrystalline nickel alloys for turbine disc applications, whilst introducing recent work at Swansea University. Previous research has concentrated particularly on the differences between in-phase (IP) and out-of-phase (OP) loading. The current work from Swansea indicates that this approach is overly simplistic and that for a complete evaluation of the alloy, intermediate phase angles should also be considered.

[1]  M. Okazaki,et al.  Temperature dependence of the intrinsic small fatigue crack growth behavior in ni-base superalloys based on measurement of crack closure , 1996 .

[2]  H. Riedel,et al.  Mechanism-based thermomechanical fatigue life prediction of cast iron. Part II: Comparison of model predictions with experiments , 2010 .

[3]  M. Sakaguchi,et al.  Thermo-Mechanical and Low Cycle Fatigues of Single Crystal Ni-Base Superalloys; Importance of Microstructure for Life Prediction , 2006 .

[4]  David L. McDowell,et al.  Advances in Multiaxial Fatigue , 1993 .

[5]  R. W. Landgraf,et al.  Advances in Fatigue Lifetime Predictive Techniques , 1992 .

[6]  A. P. Gopkalo,et al.  Procedure of Experimental Investigation into the Cyclic Crack Growth Resistance of Materials under Nonisothermal Conditions , 2005 .

[7]  Huseyin Sehitoglu,et al.  Thermal-mechanical damage in railroad wheels due to hot spotting☆ , 1985 .

[8]  H. Harada,et al.  Thermomechanical fatigue mechanism in a modern single crystal nickel base superalloy TMS-82 , 2008 .

[9]  Zhongguang Wang,et al.  Thermal-mechanical fatigue behavior of a cast K417 nickel-based superalloy , 2002 .

[10]  H. Harada,et al.  Aspects of thermomechanical fatigue of two single crystal nickel based superalloys , 2003 .

[11]  G. J. Meyers,et al.  Fracture mechanics applied to nonisothermal fatigue crack growth , 1986 .

[12]  S. Mall,et al.  Crack growth in a titanium aluminide alloy under thermal mechanical cycling , 1991 .

[13]  S. Mall,et al.  Modelling thermomechanical fatigue crack growth rates in Ti24Al11Nb , 1994 .

[14]  Henrik Andersson,et al.  Research and development into a European code-of-practice for strain-controlled thermo-mechanical fatigue testing , 2008 .

[15]  H. Sehitoglu Constraint Effect in Thermo-Mechanical Fatigue , 1985 .

[16]  Gr Leverant,et al.  Thermal-Mechanical Fatigue Crack Propagation in Nickel- and Cobalt-Base Superalloys Under Various Strain-Temperature Cycles , 1973 .

[17]  W. Evans,et al.  Thermo-mechanical fatigue and fracture of INCO718 , 2008 .

[18]  H. Harada,et al.  Crack appearance of single-crystal nickel-base superalloys after thermomechanical fatigue failure , 2009 .

[19]  D. Leidermark,et al.  Investigation of localized damage in single crystals subjected to thermalmechanical fatigue (TMF) , 2010 .

[20]  W. Evans,et al.  The interactions between fatigue, creep and environmental damage in Ti 6246 and Udimet 720Li , 2005 .

[21]  G. Greene,et al.  Total hemispherical emissivity of oxidized Inconel 718 in the temperature range 300-1000°C , 2000 .

[22]  H. Harada,et al.  Superior thermo-mechanical fatigue property of a superalloy due to its heterogeneous microstructure , 2006 .

[23]  M. Marchionni Low cycle and thermomechanical fatigue of nickel base superalloys for gas turbine application , 2002 .

[24]  Andrei Kotousov,et al.  Induction heating apparatus for high temperature testing of thermo-mechanical properties , 2009 .

[25]  O. Tassa,et al.  Thermomechanical Fatigue Behavior of Bare and Coated CMSX-4 , 2010 .

[26]  H. J. Maier,et al.  Thermomechanical fatigue—damage mechanisms and mechanism-based life prediction methods , 2003 .

[27]  R. Pelloux,et al.  Thermal-mechanical fatigue crack growth in Inconel X-750 , 1985 .

[29]  C. Engler-Pinto,et al.  Thermo-mechanical Fatigue Investigation of Single Crystal Nickel Base Superalloy SRR99 , 2000 .

[30]  K. Lang,et al.  Thermal-mechanical and isothermal fatigue of IN 792 CC , 1997 .

[31]  T. Koizumi,et al.  Effect of Strain Wave Shape on Thermal-Mechanical Fatigue Crack Propagation in a Cast Low-Alloy Steel , 1983 .

[32]  Catherine M.F. Rae,et al.  Thermo-mechanical fatigue of a polycrystalline superalloy: The effect of phase angle on TMF life and failure , 2008 .

[33]  Huang Yuan,et al.  Effects of temperature gradients on crack characterisation under thermal-mechanical loading conditions , 2000 .

[34]  E. Affeldt,et al.  Validated Code-of-Practice for Strain-Controlled Thermo-Mechanical Fatigue Testing , 2006 .

[35]  Gr Leverant,et al.  Thermomechanical fatigue crack propagation in an anisotropic (directionally solidified) nickel-base superalloy , 1976 .

[36]  Christer Persson,et al.  In-situ ESEM study of thermo-mechanical fatigue crack propagation , 2008 .

[37]  Huseyin Sehitoglu,et al.  Thermo-mechanical fatigue life prediction methods , 1992 .

[38]  C. Persson,et al.  Thermo-mechanical fatigue crack propagation experiments in Inconel 718 , 2009 .

[39]  Henrik Andersson,et al.  Thermal gradients in round TMF specimens , 2008 .

[40]  Hans-Joachim Kühn,et al.  A practicable nominal temperature tolerance for TMF-tests , 2008 .

[41]  Z. G. Wang,et al.  Thermo-mechanical fatigue of single crystal nickel-based superalloy DD8 , 2003 .