Mechanisms of physiological and epileptic HFO generation

[1]  Stephen Coombes,et al.  Modeling sharp wave‐ripple complexes through a CA3‐CA1 network model with chemical synapses , 2012, Hippocampus.

[2]  Fabrice Wendling,et al.  Distinct hyperexcitability mechanisms underlie fast ripples and epileptic spikes , 2012, Annals of neurology.

[3]  J. Jefferys,et al.  High‐frequency oscillations as a new biomarker in epilepsy , 2012, Annals of neurology.

[4]  R. Schmidt,et al.  Cross-Frequency Phase–Phase Coupling between Theta and Gamma Oscillations in the Hippocampus , 2012, The Journal of Neuroscience.

[5]  Rüdiger Köhling,et al.  Network mechanisms for fast ripple activity in epileptic tissue , 2011, Epilepsy Research.

[6]  Andrew J. Trevelyan,et al.  Cellular mechanisms of high frequency oscillations in epilepsy: On the diverse sources of pathological activities , 2011, Epilepsy Research.

[7]  P. Mareš,et al.  GABA-A receptors play a minor role in cortical epileptic afterdischarges in immature rats , 2011, Brain Research.

[8]  Sean M Montgomery,et al.  Relationships between Hippocampal Sharp Waves, Ripples, and Fast Gamma Oscillation: Influence of Dentate and Entorhinal Cortical Activity , 2011, The Journal of Neuroscience.

[9]  Roger D. Traub,et al.  Wave Speed in Excitable Random Networks with Spatially Constrained Connections , 2011, PloS one.

[10]  Jean Gotman,et al.  High-frequency (80–500Hz) oscillations and epileptogenesis in temporal lobe epilepsy , 2011, Neurobiology of Disease.

[11]  Lulan Chen,et al.  Epileptiform response of CA1 neurones to convulsant stimulation by cyclothiazide, kainic acid and pentylenetetrazol in anaesthetized rats , 2011, Seizure.

[12]  R. Miles,et al.  Glutamatergic pre-ictal discharges emerge at the transition to seizure in human epilepsy , 2011, Nature Neuroscience.

[13]  M. Vreugdenhil,et al.  In vitro hippocampal gamma oscillation power as an index of in vivo CA3 gamma oscillation strength and spatial reference memory , 2011, Neurobiology of Learning and Memory.

[14]  E. Marder,et al.  Multiple models to capture the variability in biological neurons and networks , 2011, Nature Neuroscience.

[15]  Marieke K. van Vugt,et al.  Spatially distributed patterns of oscillatory coupling between high-frequency amplitudes and low-frequency phases in human iEEG , 2011, NeuroImage.

[16]  Farshad Kheiri,et al.  Further evidence that pathologic high‐frequency oscillations are bursts of population spikes derived from recordings of identified cells in dentate gyrus , 2011, Epilepsia.

[17]  Guglielmo Foffani,et al.  Emergent Dynamics of Fast Ripples in the Epileptic Hippocampus , 2010, The Journal of Neuroscience.

[18]  Justin A. Blanco,et al.  Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients. , 2010, Journal of neurophysiology.

[19]  Jean Gotman,et al.  Convulsive status epilepticus duration as determinant for epileptogenesis and interictal discharge generation in the rat limbic system , 2010, Neurobiology of Disease.

[20]  Fabrice Wendling,et al.  Computational modeling of high-frequency oscillations at the onset of neocortical partial seizures: From ‘altered structure’ to ‘dysfunction’ , 2010, NeuroImage.

[21]  George J Augustine,et al.  Progressive NKCC1-Dependent Neuronal Chloride Accumulation during Neonatal Seizures , 2010, The Journal of Neuroscience.

[22]  D. McCormick,et al.  Endogenous Electric Fields May Guide Neocortical Network Activity , 2010, Neuron.

[23]  Tero Viitanen,et al.  The K+–Cl− cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus , 2010, The Journal of physiology.

[24]  Szabolcs Káli,et al.  Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics , 2010, The Journal of physiology.

[25]  Alejandro F. Bujan,et al.  High-Frequency Network Activity, Global Increase in Neuronal Activity, and Synchrony Expansion Precede Epileptic Seizures In Vitro , 2010, The Journal of Neuroscience.

[26]  John G. R. Jefferys,et al.  Epileptic high-frequency network activity in a model of non-lesional temporal lobe epilepsy , 2010, Brain : a journal of neurology.

[27]  Christoph Börgers,et al.  Mechanisms of very fast oscillations in networks of axons coupled by gap junctions , 2010, Journal of Computational Neuroscience.

[28]  O. Paulsen,et al.  Identification of the current generator underlying cholinergically induced gamma frequency field potential oscillations in the hippocampal CA3 region , 2010, The Journal of physiology.

[29]  Andrew White,et al.  EEG spike activity precedes epilepsy after kainate‐induced status epilepticus , 2010, Epilepsia.

[30]  Igor Timofeev,et al.  Posttraumatic Epilepsy: The Roles of Synaptic Plasticity , 2010, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[31]  J. Gotman,et al.  High‐frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery , 2010, Annals of neurology.

[32]  Hee-Sup Shin,et al.  Selective T-Type Calcium Channel Block in Thalamic Neurons Reveals Channel Redundancy and Physiological Impact of ITwindow , 2010, The Journal of Neuroscience.

[33]  R. Traub,et al.  A nonsynaptic mechanism underlying interictal discharges in human epileptic neocortex , 2009, Proceedings of the National Academy of Sciences.

[34]  Torsten Baldeweg,et al.  Spatiotemporal patterns of electrocorticographic very fast oscillations (>80 Hz) consistent with a network model based on electrical coupling between principal neurons , 2009, Epilepsia.

[35]  A. Trevelyan The Direct Relationship between Inhibitory Currents and Local Field Potentials , 2009, The Journal of Neuroscience.

[36]  G. Maccaferri,et al.  Quantitative dynamics and spatial profile of perisomatic GABAergic input during epileptiform synchronization in the CA1 hippocampus , 2009, The Journal of physiology.

[37]  Brian Litt,et al.  Synaptic noise and physiological coupling generate high-frequency oscillations in a hippocampal computational model. , 2009, Journal of neurophysiology.

[38]  Bálint Lasztóczi,et al.  Synchronization of GABAergic inputs to CA3 pyramidal cells precedes seizure-like event onset in juvenile rat hippocampal slices. , 2009, Journal of neurophysiology.

[39]  Charles L. Wilson,et al.  Three-dimensional Hippocampal Atrophy Maps Distinguish Two Common Temporal Lobe Seizure–onset Patterns Full-length Original Research , 2022 .

[40]  John G R Jefferys,et al.  Comparison between spontaneous and kainate‐induced gamma oscillations in the mouse hippocampus in vitro , 2009, The European journal of neuroscience.

[41]  I. Módy,et al.  High-frequency oscillations : What is normal and what is not ? , 2008 .

[42]  C. Stafstrom,et al.  Anticonvulsant and antiepileptic actions of 2‐deoxy‐D‐glucose in epilepsy models , 2009, Annals of neurology.

[43]  J. Gotman,et al.  Effect of sleep stage on interictal high‐frequency oscillations recorded from depth macroelectrodes in patients with focal epilepsy , 2009, Epilepsia.

[44]  Y. Ben-Ari Fast Ripples: What Do New Data about Gap Junctions and Disrupted Spike Firing Reveal about Underlying Mechanisms? , 2009, Epilepsy currents.

[45]  Andrew M. White,et al.  Development of Spontaneous Recurrent Seizures after Kainate-Induced Status Epilepticus , 2009, The Journal of Neuroscience.

[46]  M. de Curtis,et al.  Fast activity at seizure onset is mediated by inhibitory circuits in the entorhinal cortex in vitro , 2008, Annals of neurology.

[47]  Jeffery A. Hall,et al.  Interictal high‐frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain , 2008, Epilepsia.

[48]  Steven J. Middleton,et al.  Model of very fast (> 75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells , 2008, The European journal of neuroscience.

[49]  P. Marusic,et al.  Clinical impact of a high-frequency seizure onset zone in a case of bitemporal epilepsy. , 2008, Epileptic disorders : international epilepsy journal with videotape.

[50]  Giuseppe Biagini,et al.  The pilocarpine model of temporal lobe epilepsy , 2008, Journal of Neuroscience Methods.

[51]  Maxim Bazhenov,et al.  Focal Generation of Paroxysmal Fast Runs during Electrographic Seizures 2008 International League against Epilepsy , 2022 .

[52]  R. Morgan,et al.  Nonrandom connectivity of the epileptic dentate gyrus predicts a major role for neuronal hubs in seizures , 2008, Proceedings of the National Academy of Sciences.

[53]  B. Litt,et al.  High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. , 2008, Brain : a journal of neurology.

[54]  E. Halgren,et al.  Properties of in vivo interictal spike generation in the human subiculum. , 2008, Brain : a journal of neurology.

[55]  A. Sik,et al.  Transition to seizures in the isolated immature mouse hippocampus: a switch from dominant phasic inhibition to dominant phasic excitation , 2008, The Journal of physiology.

[56]  Richard Miles,et al.  Factors defining a pacemaker region for synchrony in the hippocampus , 2007, The Journal of physiology.

[57]  Itzhak Fried,et al.  Increased Fast ripple to ripple Ratios Correlate with Reduced Hippocampal Volumes and Neuron Loss in Temporal Lobe Epilepsy Patients , 2007, Epilepsia.

[58]  Guglielmo Foffani,et al.  Reduced Spike-Timing Reliability Correlates with the Emergence of Fast Ripples in the Rat Epileptic Hippocampus , 2007, Neuron.

[59]  K. Staley Neurons Skip a Beat during Fast Ripples , 2007, Neuron.

[60]  A. Priori,et al.  High-frequency oscillations (>200Hz) in the human non-parkinsonian subthalamic nucleus , 2007, Brain Research Bulletin.

[61]  R. Miles,et al.  Perturbed Chloride Homeostasis and GABAergic Signaling in Human Temporal Lobe Epilepsy , 2007, The Journal of Neuroscience.

[62]  Jerome Engel,et al.  Voltage Depth Profiles of High‐frequency Oscillations after Kainic Acid‐induced Status Epilepticus , 2007, Epilepsia.

[63]  J. Deans,et al.  Sensitivity of coherent oscillations in rat hippocampus to AC electric fields , 2007, The Journal of physiology.

[64]  B. McNaughton,et al.  EEG sharp waves and sparse ensemble unit activity in the macaque hippocampus. , 2007, Journal of neurophysiology.

[65]  Patrick R Hof,et al.  Gap junctions on hippocampal mossy fiber axons demonstrated by thin-section electron microscopy and freeze–fracture replica immunogold labeling , 2007, Proceedings of the National Academy of Sciences.

[66]  John R. Huguenard,et al.  Thalamic synchrony and dynamic regulation of global forebrain oscillations , 2007, Trends in Neurosciences.

[67]  Istvan Mody,et al.  Spike timing of lacunosom-moleculare targeting interneurons and CA3 pyramidal cells during high-frequency network oscillations in vitro. , 2007, Journal of neurophysiology.

[68]  U. Heinemann,et al.  Effects of the GABAA receptor antagonists bicuculline and gabazine on stimulus‐induced sharp wave‐ripple complexes in adult rat hippocampus in vitro , 2007 .

[69]  Matthew C. Walker,et al.  Tetanus Toxin Model of Focal Epilepsy , 2006 .

[70]  Brendon O. Watson,et al.  Modular Propagation of Epileptiform Activity: Evidence for an Inhibitory Veto in Neocortex , 2006, The Journal of Neuroscience.

[71]  P. Nunez,et al.  A theoretical basis for standing and traveling brain waves measured with human EEG with implications for an integrated consciousness , 2006, Clinical Neurophysiology.

[72]  E. Marder,et al.  Variability, compensation and homeostasis in neuron and network function , 2006, Nature Reviews Neuroscience.

[73]  J. Gotman,et al.  High-frequency oscillations during human focal seizures. , 2006, Brain : a journal of neurology.

[74]  D. Long,et al.  Models of Seizures and Epilepsy , 2006 .

[75]  M. Steriade,et al.  Waking-sleep modulation of paroxysmal activities induced by partial cortical deafferentation. , 2006, Cerebral cortex.

[76]  Ivan Cohen,et al.  Threshold Behavior in the Initiation of Hippocampal Population Bursts , 2006, Neuron.

[77]  M. Berger,et al.  High gamma activity in response to deviant auditory stimuli recorded directly from human cortex. , 2005, Journal of neurophysiology.

[78]  Nicolas Brunel,et al.  Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges. , 2005, Journal of neurophysiology.

[79]  F. Dudek,et al.  Changes in mIPSCs and sIPSCs after kainate treatment: evidence for loss of inhibitory input to dentate granule cells and possible compensatory responses. , 2005, Journal of neurophysiology.

[80]  Miles A Whittington,et al.  Combined Experimental/Simulation Studies of Cellular and Network Mechanisms of Epileptogenesis In Vitro and In Vivo , 2005, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[81]  M. Vreugdenhil,et al.  The Role of Extracellular Potassium in the Epileptogenic Transformation of Recurrent GABAergic Inhibition , 2005, Epilepsia.

[82]  B. Bean,et al.  Robustness of Burst Firing in Dissociated Purkinje Neurons with Acute or Long-Term Reductions in Sodium Conductance , 2005, The Journal of Neuroscience.

[83]  Fiona E. N. LeBeau,et al.  Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. , 2005, Journal of neurophysiology.

[84]  Massimo Avoli,et al.  Ripple activity in the dentate gyrus of dishinibited hippocampus‐entorhinal cortex slices , 2005, Journal of neuroscience research.

[85]  Andreas Draguhn,et al.  Induced sharp wave‐ripple complexes in the absence of synaptic inhibition in mouse hippocampal slices , 2005, The Journal of physiology.

[86]  M. Steriade,et al.  Neocortical seizures: initiation, development and cessation , 2004, Neuroscience.

[87]  Kevin J. Staley,et al.  Mechanisms of Fast Ripples in the Hippocampus , 2004, The Journal of Neuroscience.

[88]  F. Dudek,et al.  Increased excitatory synaptic activity and local connectivity of hippocampal CA1 pyramidal cells in rats with kainate-induced epilepsy. , 2004, Journal of neurophysiology.

[89]  Charles L. Wilson,et al.  High‐frequency Oscillations after Status Epilepticus: Epileptogenesis and Seizure Genesis , 2004, Epilepsia.

[90]  B. Litt,et al.  High-frequency oscillations and seizure generation in neocortical epilepsy. , 2004, Brain : a journal of neurology.

[91]  Charles L. Wilson,et al.  High‐frequency oscillations recorded in human medial temporal lobe during sleep , 2004, Annals of neurology.

[92]  J. Palva,et al.  Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[93]  Bálint Lasztóczi,et al.  High‐frequency synaptic input contributes to seizure initiation in the low‐[Mg2+] model of epilepsy , 2004, The European journal of neuroscience.

[94]  B. Bean,et al.  Ionic Mechanisms of Burst Firing in Dissociated Purkinje Neurons , 2003, The Journal of Neuroscience.

[95]  R. Kovács,et al.  Desynchronisation of spontaneously recurrent experimental seizures proceeds with a single rhythm , 2003, Neuroscience.

[96]  S Cerutti,et al.  300-Hz subthalamic oscillations in Parkinson's disease. , 2003, Brain : a journal of neurology.

[97]  Marom Bikson,et al.  Depolarization block of neurons during maintenance of electrographic seizures. , 2003, Journal of neurophysiology.

[98]  K. Staley,et al.  Transition from Interictal to Ictal Activity in Limbic Networks In Vitro , 2003, The Journal of Neuroscience.

[99]  Igor Timofeev,et al.  Partial cortical deafferentation promotes development of paroxysmal activity. , 2003, Cerebral cortex.

[100]  Xiao-Jing Wang,et al.  What determines the frequency of fast network oscillations with irregular neural discharges? I. Synaptic dynamics and excitation-inhibition balance. , 2003, Journal of neurophysiology.

[101]  I. Timofeev,et al.  Spontaneous field potentials influence the activity of neocortical neurons during paroxysmal activities in vivo , 2003, Neuroscience.

[102]  Y. Isomura,et al.  Excitatory gaba input directly drives seizure-like rhythmic synchronization in mature hippocampal CA1 pyramidal cells , 2003, Neuroscience.

[103]  Juha Voipio,et al.  Cation–chloride co-transporters in neuronal communication, development and trauma , 2003, Trends in Neurosciences.

[104]  J. Jefferys,et al.  Neuronal aggregate formation underlies spatiotemporal dynamics of nonsynaptic seizure initiation. , 2003, Journal of neurophysiology.

[105]  Masayuki Kobayashi,et al.  Reduced Inhibition of Dentate Granule Cells in a Model of Temporal Lobe Epilepsy , 2003, The Journal of Neuroscience.

[106]  M. Steriade,et al.  Neocortical very fast oscillations (ripples, 80-200 Hz) during seizures: intracellular correlates. , 2003, Journal of neurophysiology.

[107]  R. Miles,et al.  On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro , 2002, Science.

[108]  M. Steriade,et al.  The role of chloride-dependent inhibition and the activity of fast-spiking neurons during cortical spike–wave electrographic seizures , 2002, Neuroscience.

[109]  A. Draguhn,et al.  Tetanus toxin induces long-term changes in excitation and inhibition in the rat hippocampal CA1 area , 2002, Neuroscience.

[110]  Charles L. Wilson,et al.  Quantitative analysis of high-frequency oscillations (80-500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. , 2002, Journal of neurophysiology.

[111]  Itzhak Fried,et al.  Interictal high‐frequency oscillations (80–500Hz) in the human epileptic brain: Entorhinal cortex , 2002, Annals of neurology.

[112]  S. Schiff,et al.  Decreased Neuronal Synchronization during Experimental Seizures , 2002, The Journal of Neuroscience.

[113]  C D Binnie,et al.  Responses to single pulse electrical stimulation identify epileptogenesis in the human brain in vivo. , 2002, Brain : a journal of neurology.

[114]  Maxim Bazhenov,et al.  Cortical hyperpolarization-activated depolarizing current takes part in the generation of focal paroxysmal activities , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Charles L. Wilson,et al.  Local Generation of Fast Ripples in Epileptic Brain , 2002, The Journal of Neuroscience.

[116]  Marcello Massimini,et al.  Spatial Buffering during Slow and Paroxysmal Sleep Oscillations in Cortical Networks of Glial Cells In Vivo , 2002, The Journal of Neuroscience.

[117]  N Kopell,et al.  Gap Junctions between Interneuron Dendrites Can Enhance Synchrony of Gamma Oscillations in Distributed Networks , 2001, The Journal of Neuroscience.

[118]  F. Kloosterman,et al.  Apical and basal orthodromic population spikes in hippocampal CA1 in vivo show different origins and patterns of propagation. , 2001, Journal of neurophysiology.

[119]  M. Steriade,et al.  Focal synchronization of ripples (80-200 Hz) in neocortex and their neuronal correlates. , 2001, Journal of neurophysiology.

[120]  R. Traub,et al.  Axo-Axonal Coupling A Novel Mechanism for Ultrafast Neuronal Communication , 2001, Neuron.

[121]  H. Lüders,et al.  Presurgical evaluation of epilepsy. , 2001, Brain : a journal of neurology.

[122]  S. Hestrin,et al.  Electrical synapses between Gaba-Releasing interneurons , 2001, Nature Reviews Neuroscience.

[123]  Fiona E. N. LeBeau,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001 .

[124]  Helen J. Cross,et al.  A Possible Role for Gap Junctions in Generation of Very Fast EEG Oscillations Preceding the Onset of, and Perhaps Initiating, Seizures , 2001, Epilepsia.

[125]  E. Aronica,et al.  Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin‐immunoreactive neurons , 2001, The European journal of neuroscience.

[126]  J. Jefferys,et al.  Ictal Epileptiform Activity Is Facilitated by Hippocampal GABAA Receptor-Mediated Oscillations , 2000, The Journal of Neuroscience.

[127]  B. Connors,et al.  A network of electrically coupled interneurons drives synchronized inhibition in neocortex , 2000, Nature Neuroscience.

[128]  A. Bragin,et al.  Chronic Epileptogenesis Requires Development of a Network of Pathologically Interconnected Neuron Clusters: A Hypothesis , 2000, Epilepsia.

[129]  Y. Yarom,et al.  Resonance, oscillation and the intrinsic frequency preferences of neurons , 2000, Trends in Neurosciences.

[130]  P Varona,et al.  Macroscopic and subcellular factors shaping population spikes. , 2000, Journal of neurophysiology.

[131]  P. Somogyi,et al.  Proximally targeted GABAergic synapses and gap junctions synchronize cortical interneurons , 2000, Nature Neuroscience.

[132]  Roger D. Traub,et al.  A Model of High-Frequency Ripples in the Hippocampus Based on Synaptic Coupling Plus Axon–Axon Gap Junctions between Pyramidal Neurons , 2000, The Journal of Neuroscience.

[133]  T. Kosaka,et al.  Gap Junctions Linking the Dendritic Network of GABAergic Interneurons in the Hippocampus , 2000, The Journal of Neuroscience.

[134]  T J Lewis,et al.  Self-organized synchronous oscillations in a network of excitable cells coupled by gap junctions , 2000, Network.

[135]  C. Houser,et al.  Up‐regulation of GAD65 and GAD67 in remaining hippocampal GABA neurons in a model of temporal lobe epilepsy , 1999, The Journal of comparative neurology.

[136]  J. Jefferys,et al.  On the Synchronizing Mechanisms of Tetanically Induced Hippocampal Oscillations , 1999, The Journal of Neuroscience.

[137]  C. Wilson,et al.  Electrophysiologic Analysis of a Chronic Seizure Model After Unilateral Hippocampal KA Injection , 1999, Epilepsia.

[138]  Christophe Bernard,et al.  Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy , 1999, The Journal of comparative neurology.

[139]  R. Traub,et al.  High-frequency population oscillations are predicted to occur in hippocampal pyramidal neuronal networks interconnected by axoaxonal gap junctions , 1999, Neuroscience.

[140]  M. Walker,et al.  Halothane as a Neuroprotectant During Constant Stimulation of the Perforant Path , 1999, Epilepsia.

[141]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[142]  Charles L. Wilson,et al.  Hippocampal and Entorhinal Cortex High‐Frequency Oscillations (100–500 Hz) in Human Epileptic Brain and in Kainic Acid‐Treated Rats with Chronic Seizures , 1999, Epilepsia.

[143]  J. Csicsvari,et al.  Oscillatory Coupling of Hippocampal Pyramidal Cells and Interneurons in the Behaving Rat , 1999, The Journal of Neuroscience.

[144]  M Steriade,et al.  Spike-wave complexes and fast components of cortically generated seizures. II. Extra- and intracellular patterns. , 1998, Journal of neurophysiology.

[145]  M Steriade,et al.  Spike-wave complexes and fast components of cortically generated seizures. IV. Paroxysmal fast runs in cortical and thalamic neurons. , 1998, Journal of neurophysiology.

[146]  R. Traub,et al.  Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro , 1998, Nature.

[147]  O. Paulsen,et al.  Cholinergic induction of network oscillations at 40 Hz in the hippocampus in vitro , 1998, Nature.

[148]  E J Speckmann,et al.  Spontaneous sharp waves in human neocortical slices excised from epileptic patients. , 1998, Brain : a journal of neurology.

[149]  J. Voipio,et al.  Long-Lasting GABA-Mediated Depolarization Evoked by High-Frequency Stimulation in Pyramidal Neurons of Rat Hippocampal Slice Is Attributable to a Network-Driven, Bicarbonate-Dependent K+ Transient , 1997, The Journal of Neuroscience.

[150]  R. Llinás,et al.  Dendritic calcium conductances generate high-frequency oscillation in thalamocortical neurons. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[151]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[152]  E. Fetz,et al.  Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. , 1996, Journal of neurophysiology.

[153]  A Lücke,et al.  Synchronous GABA-Mediated Potentials and Epileptiform Discharges in the Rat Limbic System In Vitro , 1996, The Journal of Neuroscience.

[154]  J. Engel,et al.  Interspike intervals during interictal periods in human temporal lobe epilepsy , 1996, Brain Research.

[155]  T J Sejnowski,et al.  In vivo, in vitro, and computational analysis of dendritic calcium currents in thalamic reticular neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[156]  R. Traub,et al.  Cellular mechanisms of 4‐aminopyridine‐induced synchronized after‐discharges in the rat hippocampal slice. , 1995, The Journal of physiology.

[157]  J. Jefferys,et al.  Nonsynaptic modulation of neuronal activity in the brain: electric currents and extracellular ions. , 1995, Physiological reviews.

[158]  K. Staley,et al.  Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors , 1995, Science.

[159]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[160]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[161]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[162]  T. Sejnowski,et al.  Thalamocortical oscillations in the sleeping and aroused brain. , 1993, Science.

[163]  R. Traub,et al.  Synaptic and intrinsic conductances shape picrotoxin‐induced synchronized after‐discharges in the guinea‐pig hippocampal slice. , 1993, The Journal of physiology.

[164]  G. Buzsáki,et al.  High-frequency network oscillation in the hippocampus. , 1992, Science.

[165]  M. Avoli,et al.  4-aminopyridine-induced epileptiform activity and a GABA-mediated long- lasting depolarization in the rat hippocampus , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[166]  I. Soltesz,et al.  Low‐frequency oscillatory activities intrinsic to rat and cat thalamocortical cells. , 1991, The Journal of physiology.

[167]  R. Traub,et al.  Model of synchronized epileptiform bursts induced by high potassium in CA3 region of rat hippocampal slice. Role of spontaneous EPSPs in initiation. , 1990, Journal of neurophysiology.

[168]  R G Grossman,et al.  Electrophysiological connections between the hippocampus and entorhinal cortex in patients with complex partial seizures. , 1989, Journal of neurosurgery.

[169]  R. Llinás The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. , 1988, Science.

[170]  R. Traub,et al.  Spread of synchronous firing in longitudinal slices from the CA3 region of the hippocampus. , 1988, Journal of neurophysiology.

[171]  Robert K. S. Wong,et al.  Latent synaptic pathways revealed after tetanic stimulation in the hippocampus , 1987, Nature.

[172]  J. Mellanby,et al.  Limbic Epilepsy Induced by Tetanus Toxin: A Longitudinal Electroencephalographic Study , 1987, Epilepsia.

[173]  D. Johnston,et al.  4-Aminopyridine produces epileptiform activity in hippocampus and enhances synaptic excitation and inhibition. , 1987, Journal of neurophysiology.

[174]  G. Buzsáki Hippocampal sharp waves: Their origin and significance , 1986, Brain Research.

[175]  Wilkie A. Wilson,et al.  Magnesium-free medium activates seizure-like events in the rat hippocampal slice , 1986, Brain Research.

[176]  D. Johnston,et al.  Epileptiform activity induced by changes in extracellular potassium in hippocampus. , 1985, Journal of neurophysiology.

[177]  J. Mellanby,et al.  Long‐term changes in hippocampal physiology and learning ability of rats after intrahippocampal tetanus toxin. , 1985, The Journal of physiology.

[178]  R. Llinás,et al.  Ionic basis for the electro‐responsiveness and oscillatory properties of guinea‐pig thalamic neurones in vitro. , 1984, The Journal of physiology.

[179]  R. Miles,et al.  Single neurones can initiate synchronized population discharge in the hippocampus , 1983, Nature.

[180]  F. D. da Silva,et al.  Two types of interictal transients of reversed polarity in rat hippocampus during kindling. , 1983, Electroencephalography and clinical neurophysiology.

[181]  H. Haas,et al.  Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission , 1982, Nature.

[182]  D. Riche,et al.  Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. , 1982, Electroencephalography and clinical neurophysiology.

[183]  R. Traub,et al.  Cellular mechanism of neuronal synchronization in epilepsy. , 1982, Science.

[184]  M. Steriade,et al.  Thalamic bursting mechanism: an inward slow current revealed by membrane hyperpolarization , 1982, Brain Research.

[185]  J. Jefferys,et al.  Influence of electric fields on the excitability of granule cells in guinea‐pig hippocampal slices. , 1981, The Journal of physiology.

[186]  T. H. Brown,et al.  Giant synaptic potential hypothesis for epileptiform activity. , 1981, Science.

[187]  W. Freeman,et al.  Frequency analysis of olfactory system EEG in cat, rabbit, and rat. , 1980, Electroencephalography and clinical neurophysiology.

[188]  O. Ottersen,et al.  The role of epileptic activity in hippocampal and ‘remote’ cerebral lesions induced by kainic acid , 1980, Brain Research.

[189]  D. Prince,et al.  A calcium-activated hyperpolarization follows repetitive firing in hippocampal neurons. , 1980, Journal of neurophysiology.

[190]  Carl W. Cotman,et al.  Selective reinnervation of hippocampal area CA1 and the fascia dentata after destruction of CA3-CA4 afferents with kainic acid , 1980, Brain Research.

[191]  R. Nicoll,et al.  GABA-mediated biphasic inhibitory responses in hippocampus , 1979, Nature.

[192]  R. Dingledine,et al.  Penicillin blocks hippocampal IPSPs, unmasking prolonged EPSPs , 1979, Brain Research.

[193]  John Gordon Ralph Jefferys Initiation and spread of action potentials in granule cells maintained in vitro in slices of guinea‐pig hippocampus. , 1979, The Journal of physiology.

[194]  D. Prince,et al.  Participation of calcium spikes during intrinsic burst firing in hippocampal neurons , 1978, Brain Research.

[195]  D. Prince,et al.  Cellular and field potential properties of epileptogenic hippocampal slices , 1978, Brain Research.

[196]  P. Schwartzkroin,et al.  Probable calcium spikes in hippocampal neurons , 1977, Brain Research.

[197]  M. Gutnick,et al.  Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat , 1977, Experimental Brain Research.

[198]  E. Fetz,et al.  Firing patterns of epileptic and normal neurons in the chronic alumina focus in undrugged monkeys during different behavioral states , 1975, Brain Research.

[199]  J. Pincus Experimental Models of Epilepsy. A Manual for the Laboratory Worker , 1974, The Yale Journal of Biology and Medicine.

[200]  A. Wyler Epileptic neurons during sleep and wakefulness. , 1974, Experimental neurology.

[201]  E E Fetz,et al.  Behavioral control of firing patterns of normal and abnormal neurons in chronic epileptic cortex. , 1974, Experimental neurology.

[202]  G F Ayala,et al.  Genesis of epileptic interictal spikes. New knowledge of cortical feedback systems suggests a neurophysiological explanation of brief paroxysms. , 1973, Brain research.

[203]  R. Llinás,et al.  Field potentials in the alligator cerebellum and theory of their relationship to Purkinje cell dendritic spikes. , 1971, Journal of neurophysiology.

[204]  D. Prince,et al.  Intracellular recordings from chronic epileptogenic foci in the monkey. , 1970, Electroencephalography and clinical neurophysiology.

[205]  W H Calvin,et al.  Structured timing patterns within bursts from epileptic neurons in undrugged monkey cortex. , 1968, Experimental neurology.

[206]  G. Sypert,et al.  The hyperexcitable neuron: microelectrode studies of the chronic epileptic focus in the intact, awake monkey. , 1967, Experimental neurology.

[207]  J. Eccles,et al.  The ventro‐basal complex of the thalamus: types of cells, their responses and their functional organization , 1964, The Journal of physiology.

[208]  A. Ward,et al.  INTRACELLULAR STUDIES OF CORTICAL NEURONS IN CHRONIC EPILEPTOGENIC FOCI IN THE MONKEY. , 1964, Experimental neurology.

[209]  P. Andersen,et al.  The role of inhibition in the phasing of spontaneous thalamo‐cortical discharge , 1964, The Journal of physiology.

[210]  E. Kandel,et al.  Electrophysiology of hippocampal neurons. II. After-potentials and repetitive firing. , 1961, Journal of neurophysiology.

[211]  A. Ward,et al.  The hyper-excitable neurone; microelectrode studies of chronic epileptic foci in monkey. , 1959, Journal of neurophysiology.

[212]  N. A. ALADJALOVA,et al.  Infra-Slow Rhythmic Oscillations of The Steady Potential of the Cerebral Cortex , 1957, Nature.

[213]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[214]  F. Dickens,et al.  A NOTE ON THE METABOLISM OF TUMOURS. , 1930 .

[215]  H. Berger Über das Elektrenkephalogramm des Menschen , 1929, Archiv für Psychiatrie und Nervenkrankheiten.

[216]  J. Martinerie,et al.  Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. , 2010, Brain : a journal of neurology.

[217]  A. Krieger,et al.  Neocortical Epilepsy and Control Patients , 2010 .

[218]  G. Finnerty,et al.  HIGH-FREQUENCY NETWORK ACTIVITY IN A MODEL OF NONLESIONAL TEMPORAL LOBE EPILEPSY , 2010 .

[219]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.

[220]  James P. Evans The Origin , 2009, Genetics in Medicine.

[221]  P. Jonas,et al.  Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks , 2007, Nature Reviews Neuroscience.

[222]  Philip A. Williams,et al.  CHAPTER 34 – Kainate-Induced Status Epilepticus: A Chronic Model of Acquired Epilepsy , 2006 .

[223]  E. Cavalheiro,et al.  CHAPTER 35 – The Pilocarpine Model of Seizures , 2006 .

[224]  N. Crone,et al.  High-frequency gamma oscillations and human brain mapping with electrocorticography. , 2006, Progress in brain research.

[225]  A. Konnerth,et al.  Spontaneous epileptiform activity of ca1 hippocampal neurons in low extracellular calcium solutions , 2004, Experimental Brain Research.

[226]  T. Bliss,et al.  Unit analysis of hippocampal population spikes , 2004, Experimental Brain Research.

[227]  T L Babb,et al.  Functional connections in the human temporal lobe , 2004, Experimental Brain Research.

[228]  Giuseppe Biagini,et al.  Limbic network interactions leading to hyperexcitability in a model of temporal lobe epilepsy. , 2002, Journal of neurophysiology.

[229]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[230]  R. Traub,et al.  Axonal Gap Junctions Between Principal Neurons: A Novel Source of Network Oscillations, and Perhaps Epileptogenesis , 2002, Reviews in the neurosciences.

[231]  Charles L. Wilson,et al.  High‐frequency oscillations in human brain , 1999, Hippocampus.

[232]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[233]  Larry F. Lacey,et al.  Long-term effects of on , 1987 .

[234]  F. H. Lopes da Silva,et al.  Common aspects of the development of a kindling epileptogenic focus in the prepyriform cortex of the dog and in the hippocampus of the rat: spontaneous interictal transients with changing polarities. , 1982, Electroencephalography and clinical neurophysiology. Supplement.

[235]  L. Fh,et al.  Common aspects of the development of a kindling epileptogenic focus in the prepyriform cortex of the dog and in the hippocampus of the rat: spontaneous interictal transients with changing polarities. , 1982 .

[236]  D. Purpura,et al.  Experimental Models of Epilepsy--a Manual for the Laboratory Worker , 1972 .

[237]  I. M. Gibson,et al.  Continuous recording of changes in membrane potential in mammalian cerebral tissues in vitro; recovery after depolarization by added substances , 1965, Journal of Physiology.

[238]  J. Field Respiration of tissue slices. , 1948, Methods in medical research.

[239]  Field J nd Respiration of tissue slices. , 1948 .