The role of transition metal ions on HO x radicals in clouds: a numerical evaluation of its impact on multiphase chemistry

A new modelling study of the role of transition metal ions on cloud chemistry has been performed. Develop- ments of the Model of Multiphase Cloud Chemistry (M2C2; Leriche et al., 2001) are described, including the transition metal ions reactivity emission/deposition processes and vari- able photolysis in the aqueous phase. The model is then ap- plied to three summertime scenarios under urban, remote and marine conditions, described by Ervens et al. (2003). Chemical regimes in clouds are analyzed to understand the role of transition metal ions on cloud chemistry and espe- cially, on Hx Oy chemistry, which consequently influences the sulphur and the VOCs chemistry in droplets. The ra- tio of Fe(II)/Fe(III) exhibits a diurnal variation with values in agreement with the available measurements of Fe speci- ation. In the urban case, sensitivity tests with and without TMI chemistry, show an enhancement of OH concentration in the aqueous phase when TMI chemistry is considered.

[1]  R. Forkel,et al.  Modelling of radiation quantities and photolysis frequencies in the aqueous phase in the troposphere , 1997 .

[2]  D. Sedlak,et al.  The role of copper and oxalate in the redox cycling of iron in atmospheric waters , 1993 .

[3]  L. I. Elding,et al.  Manganese-catalysed autoxidation of dissolved sulfur dioxide in the atmospheric aqueous phase , 1995 .

[4]  J. Rush,et al.  Pulse radiolytic studies of the reaction of perhydroxyl/superoxide O2- with iron(II)/iron(III) ions. The reactivity of HO2/O2- with ferric ions and its implication on the occurrence of the Haber-Weiss reaction , 1985 .

[5]  A. Henglein,et al.  Chemistry of colloidal manganese oxides. 3. Formation in the reaction of hydroxyl radicals with manganese(2+) ions , 1986 .

[6]  B. Parsons,et al.  Appearance of sulphatoferric complexes in the oxidation of ferrous sulphate solutions. A study by pulse radiolysis , 1973 .

[7]  G. Buxton,et al.  Reaction of SO4- withFe2+, Mn2+ and Cu2+ inaqueous solution , 1997 .

[8]  G. S. Laurence,et al.  Kinetics of oxidation of transition-metal ions by halogen radical anions , 1973 .

[9]  F. Deutsch,et al.  Field Experimental Investigations on the Fe(II)- and Fe(III)-Content in Cloudwater Samples , 2001 .

[10]  L. Deguillaume,et al.  Modeling study of strong acids formation and partitioning in a polluted cloud during wintertime , 2003 .

[11]  J. Holcman,et al.  Interaction between copper(II)-arginine complexes and HO2/O2- radicals, a pulse radiolysis study , 1987 .

[12]  P. Warneck,et al.  Photodecomposition of Iron ( II 1 ) Hydroxo and Sulfato Complexes in Aqueous Solution : Wavelength Dependence of OH and sod-Quantum Yields , 2001 .

[13]  W. Stockwell,et al.  The influence of aqueous-phase chemical reactions on ozone formation in polluted and nonpolluted clouds , 1997 .

[14]  G. S. Laurence,et al.  Kinetics of oxidation of transition-metal ions by halogen radical anions. Part I. The oxidation of iron(II) by dibromide and dichloride ions generated by flash photolysis , 1973 .

[15]  P. Nowacki,et al.  CAPRAM2.3: A Chemical Aqueous Phase Radical Mechanism for Tropospheric Chemistry , 2000 .

[16]  B. Heikes,et al.  Chemical mechanisms of acid generation in the troposphere , 1985, Nature.

[17]  B. Faust,et al.  Photochemistry of aqueous iron(III)-polycarboxylate complexes : roles in the chemistry of atmospheric and surface waters , 1993 .

[18]  C. F. Wells,et al.  A spectrophotometric investigation of the aquomanganese(III) ion in perchlorate media , 1967 .

[19]  B. Faust,et al.  Photolysis of Fe (III)-hydroxy complexes as sources of OH radicals in clouds, fog and rain , 1990 .

[20]  B. Faust,et al.  Aqueous phase photochemical formation of hydrogen peroxide in authentic cloud waters , 1994 .

[21]  Schoen-nan Chen,et al.  Reactivity of the carbonate radical toward metal complexes in aqueous solution , 1978 .

[22]  P. Builtjes,et al.  Modelling cloud effects on ozone on a regional scale: A case study , 1997 .

[23]  D. Jacob Heterogeneous chemistry and tropospheric ozone , 2000 .

[24]  M. Bydder,et al.  Reactivity of chlorine atoms in aqueous solution Part 1The equilibrium ClMNsbd+Cl-Cl2- , 1998 .

[25]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection Part II. Single Initial Distributions , 1974 .

[26]  M. Hoffmann,et al.  Redox chemistry of iron in fog and stratus clouds , 1993 .

[27]  A. Knap,et al.  Trace metals in Bermuda rainwater , 1984 .

[28]  R. Eldik,et al.  Kinetics and mechanism of the iron(III)-catalyzed autoxidation of sulfur(IV) oxides in aqueous solution. 1. Formation of transient iron(III)-sulfur(IV) complexes , 1989 .

[29]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection: Part IV. A New Parameterization , 1974 .

[30]  M. Bizjak,et al.  S(IV) Autoxidation in Atmospheric Liquid Water: The Role of Fe(II) and the Effect of Oxalate , 1999 .

[31]  H. Christensen,et al.  Pulse radiolysis at high temperatures and high pressures , 1980 .

[32]  Rudi van Eldik,et al.  Transition Metal-Catalyzed Oxidation of Sulfur(IV) Oxides. Atmospheric-Relevant Processes and Mechanisms , 1995 .

[33]  D. Crosby,et al.  Aquatic and Surface Photochemistry , 1994 .

[34]  I. Grgić,et al.  Iron-catalyzed oxidation of s(IV) species by oxygen in aqueous solution: Influence of pH on the redox cycling of iron , 1996 .

[35]  R. Losno,et al.  The pH-dependent dissolution of wind-transported Saharan dust , 1999 .

[36]  B. Faust PHOTOCHEMISTRY, FOGS, AND AEROSOLS , 1994 .

[37]  M. L. Mandich,et al.  Kinetic model studies of atmospheric droplet chemistry: 2. Homogeneous transition metal chemistry in raindrops , 1986 .

[38]  J. Hoigné,et al.  O‐ 2 Decay Catalyzed by Cu2+ and Cu+ Ions in Aqueous Solutions: A Pulse Radiolysis Study for Atmospheric Chemistry. , 1993 .

[39]  R. Eldik,et al.  Metal Ion Catalyzed Autoxidation of Sulfur(IV)-Oxides: Redox Cycling of Metal Ions Induced by Sulfite , 1992 .

[40]  P. Warneck Chemistry of the natural atmosphere , 1999 .

[41]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[42]  I. Fábián,et al.  Kinetics and Mechanism of the Iron(III)-catalyzed Autoxidation of Sulfur(IV) Oxides in Aqueous Solution. Evidence for the Redox Cycling of Iron in the Presence of Oxygen and Modeling of the Overall Reaction Mechanism , 1994 .

[43]  G. Fones,et al.  The potential pool of Co, Ni, Cu, Pb and Cd organic complexing ligands in coastal and urban rain waters , 1997 .

[44]  M. W. Hill,et al.  The iron catalyzed oxidation of sulfur(IV) in aqueous solution: Differing effects of organics at high and low pH , 1991 .

[45]  P. Warneck,et al.  Chemical speciation of iron in fog water , 1998 .

[46]  B. Parsons,et al.  Oxidation of ferrous ions by perhydroxyl radicals , 1972 .

[47]  Z. Alfassi,et al.  Oxidation of Ferrous and Ferrocyanide Ions by Peroxyl Radicals , 1996 .

[48]  M. L. Mandich,et al.  Speciation, photosensitivity, and reactions of transition metal ions in atmospheric droplets , 1986 .

[49]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection: Part III. Accretion and Self-collection , 1974 .

[50]  Paul J. Crutzen,et al.  The role of clouds in tropospheric photochemistry , 1991 .

[51]  J. Lelieveld,et al.  A dry deposition parameterization for sulfur oxides in a chemistry and general circulation model , 1998 .

[52]  E. Eyring,et al.  Kinetics of hydrolysis of ferric ion in dilute aqueous solution , 1971 .

[53]  H. Christensen,et al.  The reaction of hydrogen peroxide with Fe(II) ions at elevated temperatures , 1993 .

[54]  P. Warneck,et al.  Iron-catalysed oxidation of bisulphite aqueous solution: Evidence for a free radical chain mechanism , 1994 .

[55]  R. Siefert,et al.  Iron photochemistry of aqueous suspensions of ambient aerosol with added organic acids , 1994 .

[56]  M. Leriche,et al.  Coupling quasi-spectral microphysics with multiphase chemistry: a case study of a polluted air mass at the top of the Puy de Dôme mountain (France) , 2001 .

[57]  G. S. Laurence,et al.  Kinetics of oxidation of transition-metal ions by halogen radical anions. Part II. The oxidation of cobalt(II) by dichloride ions generated by flash photolysis , 1973 .

[58]  I. Epstein,et al.  Systematic design of chemical oscillators. 6. Nitrous acid decomposition catalyzed by an iron(II) complex: tris(3,4,7,8-tetramethyl-1,10-phenanthroline)iron(II) , 1982 .

[59]  J. Seinfeld,et al.  Heterogeneous sulfate production in an urban fog , 1992 .

[60]  K. Sehested,et al.  The reaction mechanism and rate constants in the radiolysis of Fe2+-Cu2+ solutions. , 1976, Radiation research.

[61]  J. Rush,et al.  Pulse Radiolytic Studies of the Reactions of HO2/O2-with Fe(II)/Fe(III) Ions. , 1986 .

[62]  K. Sehested,et al.  The Oxidation of Ferrous Ions by Ozone in Acidic Solutions , 1992 .

[63]  F. Dentener Heterogeneous and liquid phase processes. Edited By Peter Warneck. Springer Verlag, Berlin. 1996. 253 Pp. Price Dm 128.00 (Hardback). Isbn 3 540 60792 7 , 1997 .

[64]  Stephen E. Schwartz,et al.  Mass-Transport Considerations Pertinent to Aqueous Phase Reactions of Gases in Liquid-Water Clouds , 1986 .

[65]  B. Sulzberger,et al.  Reactivity of various types of iron(III) (hydr)oxides towards light-induced dissolution , 1995 .

[66]  T. Jickells,et al.  The role of organic matter in controlling copper speciation in precipitation , 1996 .

[67]  J. Levec,et al.  Aqueous S(IV) oxidation—I. Catalytic effects of some metal ions , 1991 .

[68]  Mark Bydder,et al.  CAPRAM 2.4 (MODAC mechanism): An extended and condensed tropospheric aqueous phase mechanism and its application , 2003 .

[69]  S. Goldstein,et al.  Deamination of β-alanine induced by hydroxyl radicals and monovalent copper ions. A pulse radiolysis study , 1992 .

[70]  Yuegang Zuo,et al.  Formation of hydrogen peroxide and depletion of oxalic acid in atmospheric water by photolysis of iron(III)-oxalato complexes , 1992 .

[71]  S. Waygood,et al.  Kinetics of the reactions of the SO–4 radical with SO–4, S2O2–8, H2O and Fe2+ , 1990 .

[72]  R. Colvile,et al.  THE CLOUDWATER CHEMISTRY OF IRON AND COPPER AT GREAT DUN FELL, U.K. , 1997 .

[73]  T. Jickells,et al.  Solubilisation of aerosol trace metals by cloud processing: A laboratory study , 1994 .

[74]  M. Conklin,et al.  Metal ion-sulfur(IV) chemistry. 3. Thermodynamics and kinetics of transient iron(III)-sulfur(IV) complexes. , 1988, Environmental science & technology.

[75]  G. Buxton,et al.  Reaction of peroxomonosulfate radical with manganese(II) in acidic aqueous solution. A pulse radiolysis study , 1994 .

[76]  K. Sehested,et al.  Activation parameters of ferryl ion reactions in aqueous acid solutions , 1997 .

[77]  T. Graedel,et al.  Chemistry within aqueous atmospheric aerosols and raindrops , 1981 .

[78]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[79]  Geoffrey Davies,et al.  Kinetics and stoichiometry of the reaction between manganese(III) and hydrogen peroxide in acid perchlorate solution , 1968 .

[80]  A. Bouwman,et al.  Global air emission inventories for anthropogenic sources of NOx, NH3 and N2O in 1990 , 1998 .

[81]  P. Warneck Chemical reactions in clouds , 1991 .

[82]  T. Jickells,et al.  Solubilities of Al, Pb, Cu, and Zn in rain sampled in the marine environment over the North Atlantic Ocean and Mediterranean Sea , 1994 .

[83]  M. Conklin,et al.  Metal ion-sulfur(IV) chemistry. 1. Structure and thermodynamics of transient copper(II)-sulfur(IV) complexes. , 1988, Environmental science & technology.

[84]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[85]  P. Neta,et al.  Rate constants for reactions of nitrogen oxide (NO3) radicals in aqueous solutions , 1986 .

[86]  B. C. Gilbert,et al.  Mechanisms of peroxide decomposition. An ESR study of the reactions of the peroxomonosulphate anion (HOOSO3–) with TiIII, FeII, and α-oxygen-substituted radicals , 1990 .

[87]  J. Moffett,et al.  Reaction kinetics of hydrogen peroxide with copper and iron in seawater. , 1987, Environmental science & technology.

[88]  P. Warneck,et al.  Reaction Mechanism of the Iron(III)-Catalyzed Autoxidation of Bisulfite in Aqueous Solution: Steady State Description for Benzene as Radical Scavenger , 1995 .

[89]  H. Ross Trace metals in precipitation in Sweden , 1987 .

[90]  N. Huret,et al.  Influence of different microphysical schemes on the prediction of dissolution of nonreactive gases by cloud droplets and raindrops , 1994 .

[91]  G. Berčič,et al.  A Simple Kinetic Model for Autoxidation of S(IV) Oxides Catalyzed by Iron and/or Manganese Ions , 2001 .

[92]  L. Sigg,et al.  Evidence for redox cycling of iron in atmospheric water droplets , 1990, Nature.

[93]  K. Sehested,et al.  Manganese(II)-superoxide complex in aqueous solution , 1997 .

[94]  L. Sigg,et al.  Sulfur dioxide oxidation in atmospheric water: role of iron(II) and effect of ligands , 1993 .

[95]  P. Wardman,et al.  Heats of ionization of HO2 and OH in aqueous solution , 1971 .

[96]  H. Herrmann,et al.  Absolute OH quantum yields in the laser photolysis of nitrate, nitrite and dissolved H2O2 at 308 and 351 nm in the temperature range 278–353 K , 1990 .

[97]  K. Sehested,et al.  OXIDATION OF MANGANESE(II) BY OZONE AND REDUCTION OF MANGANESE(III) BY HYDROGEN PEROXIDE IN ACIDIC SOLUTION , 1998 .

[98]  G. Buxton,et al.  Critical Review of Rate Constants for Reactions of Transients from Metal Ions and Metal Complexes in Aqueous Solution , 1995 .

[99]  K. Sehested,et al.  REACTIONS OF THE FERRYL ION WITH SOME COMPOUNDS FOUND IN CLOUD WATER , 1998 .

[100]  M. Bydder,et al.  The Reactivity Of Chlorine Atoms In Aqueous Solution , 1970 .

[101]  Sture Fronæus,et al.  Kinetics and mechanism for manganese-catalyzed oxidation of sulfur(IV) by oxygen in aqueous solution , 1993 .

[102]  M. Leriche,et al.  A Model for Tropospheric Multiphase Chemistry: Application to One Cloudy Event During the CIME Experiment , 2000 .

[103]  Edwin X. Berry,et al.  An Analysis of Cloud Drop Growth by Collection: Part I. Double Distributions , 1974 .

[104]  Sasha Madronich,et al.  The Role of Solar Radiation in Atmospheric Chemistry , 1999 .

[105]  G. Berčič,et al.  The Effect of Atmospheric Organic Compounds on the Fe-Catalyzed S(IV) Autoxidation in Aqueous Solution , 1998 .

[106]  M. Hoffmann,et al.  Simultaneous spectrophotometric measurement of iron(II) and iron(III) in atmospheric water , 1992 .

[107]  Cheves Walling,et al.  Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates , 1973 .

[108]  D. Jacob,et al.  Chemistry of a polluted cloudy boundary layer , 1989 .

[109]  N. Sutin,et al.  The Kinetics of Some Oxidation-Reduction Reactions Involving Manganese(III)1 , 1964 .

[110]  A. K. Pikaev,et al.  Pulsed radiolysis of concentrated aqueous solutions of nitric acid , 1974 .

[111]  P. Warneck,et al.  Photodecomposition of Iron(III) Hydroxo and Sulfato Complexes in Aqueous Solution: Wavelength Dependence of OH and SO4- Quantum Yields , 1995 .