A model for the evolution of high frequencies of males in an androdioecious plant based on a cross-compatibility advantage of males

Lloyd’s (1975) and Charlesworth & Charlesworth’s (1978) phenotypic selection models for the maintenance of androdioecy predict that males (female-sterile individuals) must have an advantage in fertility (K) of at least two in order to invade a hermaphroditic population, and that their equilibrium frequency (xeq=(K − 2)/2(K − 1)) is always less than 0.5. In this paper, we develop a model in which male fertility is frequency-dependent, a situation not investigated in the previous models, to explore the conditions under which a high frequency of males (i.e. more than 50%) could be maintained at equilibrium. We demonstrate that a gametophytic self-incompatibility (GSI) locus linked to a nuclear sex determination locus can favour rare alleles through male function, by causing frequency-dependent selection. Thus, the spread of a female-sterility allele in a hermaphroditic population may be induced. In contrast with the previous models, our model can explain male frequencies greater than 50% in a functionally androdioecious species, as long as there is (i) dominance of female-sterility at the sex locus, and (ii) a few alleles at the self-incompatibility locus, even if the advantage in fertility of male phenotype is lower than two.

[1]  V. Albert,et al.  Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. , 2000, American journal of botany.

[2]  J. Lepart,et al.  Self‐Incompatibility and Male Fertilization Success in Phillyrea angustifolia (Oleaceae) , 2000, International Journal of Plant Sciences.

[3]  J. Thompson,et al.  Androdioecy in the entomophilous tree Fraxinus ornus (Oleaceae) , 1999 .

[4]  K. Kikuzawa,et al.  Sex ratios and genetic variation in a functionally androdioecious species, Schizopepon bryoniaefolius (Cucurbitaceae). , 1999, American journal of botany.

[5]  T. Hiura,et al.  Pollen Fertility and Flowering Phenology in an Androdioecious Tree, Fraxinus lanuginosa (Oleaceae), in Hokkaido, Japan , 1998, International Journal of Plant Sciences.

[6]  J. Werren,et al.  SEX DETERMINATION, SEX RATIOS AND GENETIC CONFLICT , 1998 .

[7]  D. Couvet,et al.  The Maintenance of Nucleocytoplasmic Polymorphism in a Metapopulation: The Case of Gynodioecy , 1998, The American Naturalist.

[8]  M. Schierup The number of self-incompatibility alleles in a finite, subdivided population. , 1998, Genetics.

[9]  M. Schierup,et al.  MATE AVAILABILITY AND FECUNDITY SELECTION IN MULTI‐ALLELIC SELF‐INCOMPATIBILITY SYSTEMS IN PLANTS , 1998, Evolution; international journal of organic evolution.

[10]  J. Pannell Widespread functional androdioecy in Mercurialis annua L. (Euphorbiaceae) , 1997 .

[11]  J. Pannell Widespread functional androdioecy inMercurialis annuaL. (Euphorbiaceae) , 1997 .

[12]  J. Pannell THE MAINTENANCE OF GYNODIOECY AND ANDRODIOECY IN A METAPOPULATION , 1997, Evolution; international journal of organic evolution.

[13]  J. Pannell VARIATION IN SEX RATIOS AND SEX ALLOCATION IN ANDRODIOECIOUS MERCURIALIS ANNUA , 1997 .

[14]  L. Rieseberg,et al.  The genetic mechanism of sex determination in the androdioecious flowering plant, Datisca glomerata (Datiscaceae) , 1997, Heredity.

[15]  M. Slatkin,et al.  Gene and allelic genealogies at a gametophytic self-incompatibility locus. , 1994, Genetics.

[16]  M. Mörchen,et al.  Gynodioecy and mitochondrial DNA polymorphism in natural populations of Beta vulgaris ssp maritima , 1994, Genetics Selection Evolution.

[17]  L. Rieseberg,et al.  High outcrossing rates maintain male and hermaphrodite individuals in populations of the flowering plant Datisca glomerata , 1992, Nature.

[18]  J. Lepart,et al.  Is Phillyrea angustifolia L. (Oleaceae) an androdioecious species , 1992 .

[19]  L. Rieseberg,et al.  Functional androdioecy in the flowering plant Datisca glomerata , 1990, Nature.

[20]  Steven A. Frank,et al.  The Evolutionary Dynamics of Cytoplasmic Male Sterility , 1989, The American Naturalist.

[21]  G. Anderson,et al.  FUNCTIONAL DIOECY AND ANDROMONOECY IN SOLANUM , 1989, Evolution; international journal of organic evolution.

[22]  P. Gouyon,et al.  The maintenance of females among hermaphrodites: the importance of nuclear-cytoplasmic interactions , 1986, Heredity.

[23]  D. Charlesworth Androdioecy and the evolution of dioecy , 1984 .

[24]  B. Charlesworth,et al.  A Model for the Evolution of Dioecy and Gynodioecy , 1978, The American Naturalist.

[25]  D. Lloyd,et al.  Genetic and phenotypic models of natural selection. , 1977, Journal of theoretical biology.

[26]  R. Ornduff THE BREAKDOWN OF TRIMORPHIC INCOMPATIBILITY IN OXALIS SECTION CORNICULATAE , 1972, Evolution; international journal of organic evolution.

[27]  D. Lewis,et al.  MALE STERILITY IN NATURAL POPULATIONS OF HERMAPHRODITE PLANTS THE EQUILIBRIUM BETWEEN FEMALES AND HERMAPHRODITES TO BE EXPECTED WITH DIFFERENT TYPES OF INHERITANCE , 1941 .

[28]  S. Wright,et al.  The Distribution of Self-Sterility Alleles in Populations. , 1939, Genetics.

[29]  Christine Vassiliadis Évolution et maintien de l'androdioécie : étude théorique et approches experimentales chez Phillyrea angustifolia L , 1999 .

[30]  J. Pannell Mixed genetic and environmental sex determination in an androdioecious population of Mercurialis annua , 1997, Heredity.

[31]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[32]  P. Gouyon,et al.  Co-evolution between two symbionts: the case of cytoplasmic male-sterility in higher plants. , 1990 .

[33]  A. Richards,et al.  Plant Breeding Systems , 1986 .

[34]  H. Yampolsky,et al.  Distribution of sex forms in the phanerogamic flora , 1922 .