Knowledge representation and processing with formal concept analysis

During the last three decades, formal concept analysis (FCA) became a well‐known formalism in data analysis and knowledge discovery because of its usefulness in important domains of knowledge discovery in databases (KDD) such as ontology engineering, association rule mining, machine learning, as well as relation to other established theories for representing knowledge processing, like description logics, conceptual graphs, and rough sets. In early days, FCA was sometimes misconceived as a static crisp hardly scalable formalism for binary data tables. In this paper, we will try to show that FCA actually provides support for processing large dynamical complex (may be uncertain) data augmented with additional knowledge. © 2013 Wiley Periodicals, Inc.

[1]  Sergei O. Kuznetsov,et al.  Toxicology Analysis by Means of the JSM-method , 2003, Bioinform..

[2]  Gerd Stumme,et al.  Efficient Mining of Association Rules Based on Formal Concept Analysis , 2005, Formal Concept Analysis.

[3]  Vilém Vychodil,et al.  Formal Concept Analysis With Background Knowledge: Attribute Priorities , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[4]  Engelbert Mephu Nguifo,et al.  A new Informative Generic Base of Association Rules , 2005, CLA.

[5]  Mondher Maddouri,et al.  Towards a machine learning approach based on incremental concept formation , 2004, Intell. Data Anal..

[6]  Henry Soldano,et al.  Alpha Galois Lattices: An Overview , 2005, ICFCA.

[7]  Marc Ricordeau,et al.  Q-concept-learning: generalization with concept lattice representation in reinforcement learning , 2003, Proceedings. 15th IEEE International Conference on Tools with Artificial Intelligence.

[8]  Madalina Croitoru,et al.  Conceptual Structures: From Information to Intelligence , 2011 .

[9]  Rudolf Wille,et al.  A Triadic Approach to Formal Concept Analysis , 1995, ICCS.

[10]  Nicolas Maille,et al.  From students to approximately reasoning agents : the Continuous Inference , 2007 .

[11]  Jonas Poelmans,et al.  Concept-Based Biclustering for Internet Advertisement , 2012, 2012 IEEE 12th International Conference on Data Mining Workshops.

[12]  Peter W. Eklund,et al.  Algorithms for Creating Relational Power Context Families from Conceptual Graphs , 1999, ICCS.

[13]  Alex Pogel,et al.  Contingency Structures and Concept Analysis , 2008, ICFCA.

[14]  Camille Roth,et al.  Reducing the Representation Complexity of Lattice-Based Taxonomies , 2007, ICCS.

[15]  Bernhard Ganter,et al.  Implications in Triadic Formal Contexts , 2004, ICCS.

[16]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[17]  Bernhard Ganter,et al.  Completing Description Logic Knowledge Bases Using Formal Concept Analysis , 2007, IJCAI.

[18]  Amedeo Napoli,et al.  A Proposal for Combining Formal Concept Analysis and Description Logics for Mining Relational Data , 2007, ICFCA.

[19]  Christian Meschke Approximations in Concept Lattices , 2010, ICFCA.

[20]  Amedeo Napoli,et al.  Biclustering meets triadic concept analysis , 2013, Annals of Mathematics and Artificial Intelligence.

[21]  Claudio Carpineto,et al.  Concept data analysis - theory and applications , 2004 .

[22]  Jonas Poelmans,et al.  Text Mining Scientific Papers: A Survey on FCA-Based Information Retrieval Research , 2012, Industrial Conference on Data Mining.

[23]  Václav Snásel,et al.  On Concept Lattices and Implication Bases from Reduced Contexts , 2008, ICCS Supplement.

[24]  Marianne Huchard,et al.  Relational concept discovery in structured datasets , 2007, Annals of Mathematics and Artificial Intelligence.

[25]  Andreas Hotho,et al.  Discovering shared conceptualizations in folksonomies , 2008, J. Web Semant..

[26]  Petko Valtchev,et al.  Galicia : an open platform for lattices , 2003 .

[27]  Bernhard Ganter,et al.  A Formal Concept Analysis Approach to Rough Data Tables , 2011, Trans. Rough Sets.

[28]  Felix Distel,et al.  Exploring Finite Models in the Description Logic ELgfp , 2009 .

[29]  C.J.H. Mann,et al.  Fuzzy Relational Systems: Foundations and Principles , 2003 .

[30]  O. Ridoux,et al.  Introduction to logical information systems , 2004, Inf. Process. Manag..

[31]  Susanne Prediger Nested Concept Graphs and Triadic Power Context Families , 2000, ICCS.

[32]  Radim Bělohlávek,et al.  Fuzzy Relational Systems: Foundations and Principles , 2002 .

[33]  Anthony K. H. Tung,et al.  Mining frequent closed cubes in 3D datasets , 2006, VLDB.

[34]  Sergei O. Kuznetsov,et al.  Relations between Proto-fuzzy concepts, Crisply Generated Fuzzy Concepts, and Interval Pattern Structures , 2010, CLA.

[35]  Michael Bain,et al.  Inductive Construction of Ontologies from Formal Concept Analysis , 2003, Australian Conference on Artificial Intelligence.

[36]  Camille Roth,et al.  Approaches to the Selection of Relevant Concepts in the Case of Noisy Data , 2010, ICFCA.

[37]  J. Hartigan Direct Clustering of a Data Matrix , 1972 .

[38]  Ramón Fuentes-González,et al.  The study of the L-fuzzy concept lattice , 1994 .

[39]  Engelbert Mephu Nguifo,et al.  IGLUE: A lattice-based constructive induction system , 2001, Intell. Data Anal..

[40]  Matteo Gaeta,et al.  RSS-based e-learning recommendations exploiting fuzzy FCA for Knowledge Modeling , 2012, Appl. Soft Comput..

[41]  Karl Erich Wolff,et al.  Temporal Relational Semantic Systems , 2010, ICCS.

[42]  Engelbert Mephu Nguifo,et al.  A Comparative Study of FCA-Based Supervised Classification Algorithms , 2004, ICFCA.

[43]  Rokia Missaoui,et al.  A framework for incremental generation of closed itemsets , 2008, Discret. Appl. Math..

[44]  Camille Roth,et al.  On Succinct Representation of Knowledge Community Taxonomies with Formal Concept Analysis , 2008, Int. J. Found. Comput. Sci..

[45]  Felix Distel An Approach to Exploring Description Logic Knowledge Bases , 2010, ICFCA.

[46]  Vilém Vychodil,et al.  Discovery of optimal factors in binary data via a novel method of matrix decomposition , 2010, J. Comput. Syst. Sci..

[47]  R. Belohlávek Fuzzy Closure Operators , 2001 .

[48]  Klaus Biedermann,et al.  How Triadic Diagrams Represent Conceptual Structures , 1997, ICCS.

[49]  P. Nicole,et al.  La logique, ou, L'art de penser , 1993 .

[50]  Nicolas Pasquier,et al.  Efficient Mining of Association Rules Using Closed Itemset Lattices , 1999, Inf. Syst..

[51]  Jérôme Euzenat,et al.  Similarity-Based Ontology Alignment in OWL-Lite , 2004, ECAI.

[52]  Lothar Thiele,et al.  A systematic comparison and evaluation of biclustering methods for gene expression data , 2006, Bioinform..

[53]  Sergei O. Kuznetsov,et al.  Fitting Pattern Structures to Knowledge Discovery in Big Data , 2013, ICFCA.

[54]  John L. Pfaltz Representing Numeric Values in Concept Lattices , 2007, CLA.

[55]  Manuel Ojeda-Aciego,et al.  Formal concept analysis via multi-adjoint concept lattices , 2009, Fuzzy Sets Syst..

[56]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[57]  Bernhard Ganter,et al.  Concept-Based Data Mining with Scaled Labeled Graphs , 2004, ICCS.

[58]  Rudolf Wille,et al.  The Lattice of Concept Graphs of a Relationally Scaled Context , 1999, ICCS.

[59]  Rudolf Wille,et al.  Conceptual Graphs and Formal Concept Analysis , 1997, ICCS.

[60]  John F. Sowa,et al.  Conceptual Structures: Information Processing in Mind and Machine , 1983 .

[61]  Clémentine Nebut,et al.  Fixing Generalization Defects in UML Use Case Diagrams , 2012, CLA.

[62]  Radim Belohlávek,et al.  Concept lattices and order in fuzzy logic , 2004, Ann. Pure Appl. Log..

[63]  Anne Berry,et al.  A local approach to concept generation , 2007, Annals of Mathematics and Artificial Intelligence.

[64]  Rudolf Wille Boolean Judgment Logic , 2001, ICCS.

[65]  Bernhard Ganter,et al.  Two Basic Algorithms in Concept Analysis , 2010, ICFCA.

[66]  J. Bordat Calcul pratique du treillis de Galois d'une correspondance , 1986 .

[67]  Sergei O. Kuznetsov,et al.  Pattern Structures for Analyzing Complex Data , 2009, RSFDGrC.

[68]  Rokia Missaoui,et al.  Mining Triadic Association Rules from Ternary Relations , 2011, ICFCA.

[69]  Amedeo Napoli,et al.  ZART: A Multifunctional Itemset Mining Algorithm , 2007, CLA.

[70]  Sergei O. Kuznetsov,et al.  Mathematical aspects of concept analysis , 1996 .

[71]  Christian Sacarea,et al.  OpenFCA, an open source formal concept analysis toolbox , 2010, 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR).

[72]  Baris Sertkaya A Survey on how Description Logic Ontologies Benefit from FCA , 2010, CLA.

[73]  Joachim Hereth Relational Scaling and Databases , 2002 .

[74]  Robert E. Kent,et al.  Rough Concept Analysis: A Synthesis of Rough Sets and Formal Concept Analysis , 1996, Fundam. Informaticae.

[75]  Michael Luxenburger,et al.  Implications partielles dans un contexte , 1991 .

[76]  Jean Sallantin,et al.  Structural Machine Learning with Galois Lattice and Graphs , 1998, ICML.

[77]  Rudolf Wille Implicational Concept Graphs , 2004, ICCS.

[78]  Jean-François Boulicaut,et al.  Constraint-based concept mining and its application to microarray data analysis , 2005, Intell. Data Anal..

[79]  Thomas Tilley Tool Support for FCA , 2004, ICFCA.

[80]  George Voutsadakis,et al.  Polyadic Concept Analysis , 2002, Order.

[81]  Luc De Raedt,et al.  Mining Bi-sets in Numerical Data , 2006, KDID.

[82]  Kuznetsov Sergei,et al.  Information Retrieval and Knowledge Discovery with FCART , 2013 .

[83]  Radim Belohlávek,et al.  Fuzzy Galois Connections , 1999, Math. Log. Q..

[84]  Sebastian Rudolph,et al.  Using FCA for Encoding Closure Operators into Neural Networks , 2007, ICCS.

[85]  Arlindo L. Oliveira,et al.  Biclustering algorithms for biological data analysis: a survey , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[86]  Jean-François Boulicaut Condensed Representations for Data Mining , 2005 .

[87]  Frithjof Dau,et al.  From Formal Concept Analysis to Contextual Logic , 2005, Formal Concept Analysis.

[88]  Ruggero G. Pensa,et al.  Assessment of discretization techniques for relevant pattern discovery from gene expression data , 2004, BIOKDD.

[89]  Steffen Staab,et al.  Ontologies improve text document clustering , 2003, Third IEEE International Conference on Data Mining.

[90]  Jan Outrata,et al.  Boolean Factor Analysis for Data Preprocessing in Machine Learning , 2010, 2010 Ninth International Conference on Machine Learning and Applications.

[91]  Sérgio M. Dias,et al.  Reducing the Size of Concept Lattices: The JBOS Approach , 2010, CLA.

[92]  Uta Priss,et al.  Formal concept analysis in information science , 2006, Annu. Rev. Inf. Sci. Technol..

[93]  Bernhard Ganter,et al.  Pattern Structures and Their Projections , 2001, ICCS.

[94]  Sergei O. Kuznetsov,et al.  On stability of a formal concept , 2007, Annals of Mathematics and Artificial Intelligence.

[95]  Mehran Sahami,et al.  Learning Classification Rules Using Lattices , 1995 .

[96]  Vilém Vychodil,et al.  Factorizing Three-Way Binary Data with Triadic Formal Concepts , 2010, KES.

[97]  Yiyu Yao,et al.  A Comparative Study of Formal Concept Analysis and Rough Set Theory in Data Analysis , 2004, Rough Sets and Current Trends in Computing.

[98]  Bernhard Ganter Lattices of Rough Set Abstractions as P -Products , 2008, ICFCA.

[99]  Jonas Poelmans,et al.  Text Mining Scientific Papers: A Survey on FCA-Based Information Retrieval Research , 2012, ICDM.

[100]  Peter Becker,et al.  A Survey of Formal Concept Analysis Support for Software Engineering Activities , 2005, Formal Concept Analysis.

[101]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[102]  Vincent Duquenne,et al.  Familles minimales d'implications informatives résultant d'un tableau de données binaires , 1986 .

[103]  Mong-Li Lee,et al.  Concept lattice based composite classifiers for high predictability , 2002, J. Exp. Theor. Artif. Intell..

[104]  Sebastian Rudolph,et al.  Exploring Relational Structures Via FLE , 2004, ICCS.

[105]  Jean-François Boulicaut,et al.  Closed patterns meet n-ary relations , 2009, TKDD.

[106]  Derrick G. Kourie,et al.  AddIntent: A New Incremental Algorithm for Constructing Concept Lattices , 2004, ICFCA.

[107]  Gerd Stumme,et al.  FCA-MERGE: Bottom-Up Merging of Ontologies , 2001, IJCAI.

[108]  Engelbert Mephu Nguifo,et al.  Frequent closed itemset based algorithms: a thorough structural and analytical survey , 2006, SKDD.

[109]  Bernhard Ganter,et al.  Hypotheses and Version Spaces , 2003, ICCS.

[110]  Rudolf Wille,et al.  The Basic Theorem of triadic concept analysis , 1995 .

[111]  Bernhard Ganter,et al.  Scale Coarsening as Feature Selection , 2008, ICFCA.

[112]  Bernhard Ganter,et al.  Formal Concept Analysis: Mathematical Foundations , 1998 .

[113]  Andrei Popescu,et al.  Concept lattices and similarity in non-commutative fuzzy logic , 2002, Fundam. Informaticae.

[114]  Sergei O. Kuznetsov,et al.  Approximating Concept Stability , 2012, ICFCA.

[115]  Marc Boyer,et al.  The cube lattice model and its applications , 2003, Appl. Artif. Intell..

[116]  Rudolf Wille,et al.  Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts , 2009, ICFCA.

[117]  Vilém Vychodil,et al.  Computing Formal Concepts by Attribute Sorting , 2012, Fundam. Informaticae.

[118]  Sergei O. Kuznetsov,et al.  Machine Learning and Formal Concept Analysis , 2004, ICFCA.

[119]  J. Deogun,et al.  Concept approximations based on rough sets and similarity measures , 2001 .

[120]  Amedeo Napoli,et al.  Analysis of Social Communities with Iceberg and Stability-Based Concept Lattices , 2008, ICFCA.

[121]  Tomasz Imielinski,et al.  Mining association rules between sets of items in large databases , 1993, SIGMOD Conference.

[122]  Vilém Vychodil,et al.  Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data , 2012, Inf. Sci..

[123]  Boris Mirkin,et al.  Mathematical Classification and Clustering , 1996 .

[124]  Olivier Ridoux,et al.  A Parameterized Algorithm to Explore Formal Contexts with a Taxonomy , 2008, Int. J. Found. Comput. Sci..

[125]  Uta Priss FcaStone-FCA file format conversion and interoperability software , 2008 .

[126]  Marianne Huchard,et al.  When concepts point at other concepts: the case of UML diagram reconstruction , 2014 .

[127]  Bernard Ducomet,et al.  Czech Republic , 2013, International Journal of Pharmaceutical Medicine.

[128]  Mohammed J. Zaki,et al.  TRICLUSTER: an effective algorithm for mining coherent clusters in 3D microarray data , 2005, SIGMOD '05.

[129]  Karell Bertet,et al.  Navigala: an Original Symbol Classifier Based on Navigation through a Galois Lattice , 2011, Int. J. Pattern Recognit. Artif. Intell..

[130]  L. Beran,et al.  [Formal concept analysis]. , 1996, Casopis lekaru ceskych.

[131]  Gerd Stumme,et al.  ToscanaJ – An Open Source Tool for Qualitative Data Analysis , 2002 .

[132]  Steffen Staab,et al.  Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis , 2005, J. Artif. Intell. Res..

[133]  Jean-Marc Champarnaud,et al.  Theoretical study and implementation of the canonical automaton , 2002, Fundam. Informaticae.

[134]  Karl Erich Wolff,et al.  States, Transitions, and Life Tracks in Temporal Concept Analysis , 2005, Formal Concept Analysis.

[135]  Bernhard Ganter,et al.  Attribute Exploration with Background Knowledge , 1999, Theor. Comput. Sci..

[136]  Franz Baader,et al.  Applying Formal Concept Analysis to Description Logics , 2004, ICFCA.

[137]  Sergei O. Kuznetsov,et al.  Learning of Simple Conceptual Graphs from Positive and Negative Examples , 1999, PKDD.

[138]  Zainab Assaghir,et al.  Numerical Information Fusion: Lattice of Answers with Supporting Arguments , 2011, 2011 IEEE 23rd International Conference on Tools with Artificial Intelligence.

[139]  David Maier,et al.  The Theory of Relational Databases , 1983 .

[140]  Gerd Stumme,et al.  A Finite State Model for On-Line Analytical Processing in Triadic Contexts , 2005, ICFCA.

[141]  Gerd Stumme,et al.  Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets , 2000, Computational Logic.

[142]  Francisco J. Valverde-Albacete,et al.  Extending conceptualisation modes for generalised Formal Concept Analysis , 2011, Inf. Sci..

[143]  Bernard De Baets,et al.  Inducing decision trees via concept lattices , 2009, CLA.

[144]  Marie-Aude Aufaure,et al.  A Buzz and E-Reputation Monitoring Tool for Twitter Based on Galois Lattices , 2011, ICCS.

[145]  Francisco J. Valverde-Albacete,et al.  Gene expression array exploration using K-formal concept analysis , 2011, ICFCA 2011.

[146]  Vilém Vychodil,et al.  Attribute Implications in a Fuzzy Setting , 2006, ICFCA.

[147]  Cynthia Vera Glodeanu Fuzzy-Valued Triadic Implications , 2011, CLA.

[148]  Bernhard Ganter,et al.  Formal Concept Analysis , 2013 .

[149]  Philip Calvert,et al.  Encyclopedia of Data Warehousing and Mining , 2006 .

[150]  Sadok Ben Yahia,et al.  Scalable Mining of Frequent Tri-concepts from Folksonomies , 2012, PAKDD.

[151]  Fred S. Roberts,et al.  Applications of combinatorics and graph theory to the biological and social sciences , 1989 .

[152]  Olivier Ridoux,et al.  A Logical Generalization of Formal Concept Analysis , 2000, ICCS.

[153]  Rokia Missaoui,et al.  An Incremental Concept Formation Approach for Learning from Databases , 1994, Theor. Comput. Sci..

[154]  Vilém Vychodil,et al.  Distributed Algorithm for Computing Formal Concepts Using Map-Reduce Framework , 2009, IDA.

[155]  Jonas Poelmans,et al.  Can triconcepts become triclusters? , 2013, Int. J. Gen. Syst..

[156]  George M. Church,et al.  Biclustering of Expression Data , 2000, ISMB.

[157]  Ondrej Kr,et al.  Proto-fuzzy Concepts, their Retrieval and Usage , 2008 .

[158]  Sergei O. Kuznetsov,et al.  Computing premises of a minimal cover of functional dependencies is intractable , 2013, Discret. Appl. Math..

[159]  Claudio Carpineto,et al.  GALOIS: An Order-Theoretic Approach to Conceptual Clustering , 1993, ICML.

[160]  Vijay V. Raghavan,et al.  Probability Logic Modeling of Knowledge Discovery in Databases , 2003, ISMIS.

[161]  Frithjof Dau,et al.  The Logic System of Concept Graphs with Negation , 2003, Lecture Notes in Computer Science.