Quantum Message Distribution

The semiquantum techniques have been explored recently to bridge the classical communications and the quantum communications. In this paper, we present one scheme to distribute the messages from one quantum participate to one weak quantum participate who can only measure the quantum states. It is proved to be robust by combining the classical coding encryption, quantum coding and other quantum techniques.

[1]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[2]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[3]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[4]  M. Luo,et al.  Deterministic remote preparation of an arbitrary W-class state with multiparty , 2010 .

[5]  Daowen Qiu,et al.  Semiquantum-key distribution using less than four quantum states , 2009 .

[6]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[7]  N. An,et al.  Quantum secure direct communication by using GHZ states and entanglement swapping , 2006 .

[8]  Marco Lucamarini,et al.  Secure deterministic communication without entanglement. , 2005, Physical review letters.

[9]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[10]  Keye Martin,et al.  Steganographic Communication with Quantum Information , 2007, Information Hiding.

[11]  V. Buzek,et al.  Towards quantum-based privacy and voting , 2005, quant-ph/0505041.

[12]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[13]  Michael Siomau,et al.  High-fidelity copies from a symmetric 1→2 quantum cloning machine , 2010 .

[14]  Harald Weinfurter,et al.  Secure Communication with a Publicly Known Key , 2001 .

[15]  Dominic Mayers,et al.  Unconditional security in quantum cryptography , 1998, JACM.

[16]  Ran Gelles,et al.  Semi-Quantum Key Distribution , 2008, ArXiv.

[17]  A Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[18]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[19]  C. H. Bennett,et al.  Remote state preparation. , 2000, Physical review letters.

[20]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[21]  Guihua Zeng,et al.  Quantum anonymous voting systems based on entangled state , 2008 .

[22]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[23]  Masahito Hayashi,et al.  Quantum Computation and Information , 2006 .

[24]  Fibirova Jana,et al.  Profit-Sharing – A Tool for Improving Productivity, Profitability and Competitiveness of Firms? , 2013 .

[25]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[26]  Wang Jian,et al.  A Composed Protocol of Quantum Identity Authentication Plus Quantum Key Distribution Based on Squeezed States , 2011 .

[27]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[28]  Tal Mor,et al.  Quantum Key Distribution with Classical Bob , 2007, 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM'07).

[29]  F. Schmidt-Kaler,et al.  Deterministic quantum teleportation with atoms , 2004, Nature.

[30]  A. Pati Minimum classical bit for remote preparation and measurement of a qubit , 1999, quant-ph/9907022.

[31]  Qiaoyan Wen,et al.  Quantum secure direct communication with χ -type entangled states , 2008 .

[32]  Yixian Yang,et al.  Quantum steganography with large payload based on entanglement swapping of χ-type entangled states , 2011 .

[33]  H. Lo Classical-communication cost in distributed quantum-information processing: A generalization of quantum-communication complexity , 1999, quant-ph/9912009.

[34]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[35]  Zhan-jun Zhang Comment on : Quantum direct communication with authentication , 2006, quant-ph/0604125.

[36]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[37]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .