An improved epsilon constraint handling method embedded in MOEA/D for constrained multi-objective optimization problems

This paper proposes an improved epsilon constraint handling method embedded in the multi-objective evolutionary algorithm based on decomposition (MOEA/D) to solve constrained multi-objective optimization problems (CMOPs). More specifically, it dynamically adjusts the epsilon level, which is a critical parameter in the epsilon constraint method, according to the feasible ratio of solutions in the current population. In order to verify the effect of the improved epsilon constraint handling method, three algorithms - MOEA/D-CDP, MOEA/D-Epsilon, and MOEA/D-IEpsilon (MOEA/D with the improved epsilon constraint handling mechanism) are tested on nine CMOPs (CMOP1-CMOP9). The comprehensive experimental results indicate that the proposed epsilon constraint handling method is very effective on the performance of both convergence and diversity.

[1]  Ling Wang,et al.  An effective co-evolutionary differential evolution for constrained optimization , 2007, Appl. Math. Comput..

[2]  Frank Hoffmeister,et al.  Problem-Independent Handling of Constraints by Use of Metric Penalty Functions , 1996, Evolutionary Programming.

[3]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[4]  Qingfu Zhang,et al.  MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.

[5]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[6]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[7]  Ian C. Parmee,et al.  The Ant Colony Metaphor for Searching Continuous Design Spaces , 1995, Evolutionary Computing, AISB Workshop.

[8]  Gary G. Yen,et al.  Constraint Handling in Multiobjective Evolutionary Optimization , 2009, IEEE Transactions on Evolutionary Computation.

[9]  Yong Wang,et al.  A Multiobjective Optimization-Based Evolutionary Algorithm for Constrained Optimization , 2006, IEEE Transactions on Evolutionary Computation.

[10]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[11]  Marco Laumanns,et al.  SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .

[12]  Junichi Suzuki,et al.  R2-IBEA: R2 indicator based evolutionary algorithm for multiobjective optimization , 2013, 2013 IEEE Congress on Evolutionary Computation.

[13]  David W. Coit,et al.  Adaptive Penalty Methods for Genetic Optimization of Constrained Combinatorial Problems , 1996, INFORMS J. Comput..

[14]  T. Van Le A fuzzy evolutionary approach to constrained optimisation problems , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[15]  Wang Yong,et al.  Constrained Optimization Evolutionary Algorithms , 2009 .

[16]  Yuren Zhou,et al.  Constrained Optimization Evolutionary Algorithms: Constrained Optimization Evolutionary Algorithms , 2009 .

[17]  Hyun Myung,et al.  Evolutionary programming techniques for constrained optimization problems , 1997, IEEE Trans. Evol. Comput..

[18]  Alan S. Perelson,et al.  Genetic Algorithms and the Immune System , 1990, PPSN.

[19]  Xin Yao,et al.  Stochastic ranking for constrained evolutionary optimization , 2000, IEEE Trans. Evol. Comput..

[20]  Qingfu Zhang,et al.  Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II , 2009, IEEE Transactions on Evolutionary Computation.

[21]  Eckart Zitzler,et al.  Indicator-Based Selection in Multiobjective Search , 2004, PPSN.

[22]  Hui Li,et al.  Difficulty Controllable and Scalable Constrained Multi-objective Test Problems , 2015, 2015 International Conference on Industrial Informatics - Computing Technology, Intelligent Technology, Industrial Information Integration.

[23]  Patrick D. Surry,et al.  The COMOGA Method: Constrained Optimisation by Multi-Objective Genetic Algorithms , 1997 .

[24]  P. Siarry,et al.  Multiobjective Optimization: Principles and Case Studies , 2004 .

[25]  Martin J. Oates,et al.  PESA-II: region-based selection in evolutionary multiobjective optimization , 2001 .

[26]  Eckart Zitzler,et al.  HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization , 2011, Evolutionary Computation.

[27]  Susan E. Carlson,et al.  Annealing a genetic algorithm over constraints , 1998, SMC'98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No.98CH36218).

[28]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[29]  Tetsuyuki Takahama,et al.  Constrained optimization by the ε constrained differential evolution with an archive and gradient-based mutation , 2010, IEEE Congress on Evolutionary Computation.

[30]  Zbigniew Michalewicz,et al.  Using Cultural Algorithms for Constraint Handling in GENOCOP , 1995, Evolutionary Programming.

[31]  H. Adeli,et al.  Augmented Lagrangian genetic algorithm for structural optimization , 1994 .

[32]  Marco Laumanns,et al.  An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method , 2006, Eur. J. Oper. Res..

[33]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[34]  Christopher R. Houck,et al.  On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with GA's , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[35]  Tapabrata Ray,et al.  Infeasibility Driven Evolutionary Algorithm for Constrained Optimization , 2009 .

[36]  Ángel Fernando Kuri Morales,et al.  A UNIVERSAL ECLECTIC GENETIC ALGORITHM FOR CONSTRAINED OPTIMIZATION , 2022 .

[37]  Tetsuyuki Takahama,et al.  Constrained Optimization by the ε Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[38]  Marc Schoenauer,et al.  ASCHEA: new results using adaptive segregational constraint handling , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[39]  Jan Paredis,et al.  Co-evolutionary Constraint Satisfaction , 1994, PPSN.

[40]  Zbigniew Michalewicz,et al.  Adaptive evolutionary planner/navigator for mobile robots , 1997, IEEE Trans. Evol. Comput..

[41]  N. Hansen,et al.  Markov Chain Analysis of Cumulative Step-Size Adaptation on a Linear Constrained Problem , 2015, Evolutionary Computation.

[42]  A. Rezaee Jordehi,et al.  A review on constraint handling strategies in particle swarm optimisation , 2015, Neural Computing and Applications.

[43]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[44]  Yuren Zhou,et al.  An Adaptive Tradeoff Model for Constrained Evolutionary Optimization , 2008, IEEE Transactions on Evolutionary Computation.

[45]  Abdollah Homaifar,et al.  Constrained Optimization Via Genetic Algorithms , 1994, Simul..