Characterization of Model Three-Way Catalysts

Abstract The accessible metallic area measured by hydrogen chemisorption on model ceria–alumina supported platinum or(and) rhodium catalysts has been compared to the results obtained in cyclohexane aromatization activity tests. The benzene formation was studied at 573 K after reduction by hydrogen at the same temperature. The turnover frequency, calculated on the basis of hydrogen chemisorption data, was found to depend on the type of support, ceria or alumina, in interaction with the precious metal particles. However, for the catalysts supported on ceria–alumina, the activity per metallic platinum or rhodium site was almost the same for both fresh catalysts or after hydrothermal aging at 1273 K. The possible use of the cyclohexane aromatization activity measurement for the determination of the metallic area of three-way catalysts is examined. Compared to hydrogen chemisorption, this method presents the advantage of a better sensitivity for measuring very low dispersions of aged catalysts, typically dispersions inferior to 3%. In the discussion, the possible influence of hydrogen spill-over effects and of the connected role of chlorine are considered. Although not directly studied, the possible effect of sulphur present in commercial catalysts aged in vehicles is also discussed.

[1]  D. Bianchi,et al.  Heat of Adsorption of Carbon Monoxide on a Pt/Rh/CeO2/Al2O3Three-Way Catalyst Usingin-SituInfrared Spectroscopy at High Temperatures , 1998 .

[2]  V. Perrichon,et al.  Characterization of Model Three-Way Catalysts: III. Infrared Study of the Surface Composition of Platinum–Rhodium Ceria–Alumina Catalysts , 1998 .

[3]  N. Essayem,et al.  Measurement of the ceria surface area of a three-way commercial catalyst after laboratory and engine bench aging. , 1998 .

[4]  Michel Primet,et al.  Evolution of the ceria surface area of PtRh ceria-alumina catalysts submitted to hydrothermal aging at 1273 K , 1997 .

[5]  R. Fréty,et al.  Preparation of Alumina-Supported Ceria. II. Measurement of Ceria Surface Area after Impregnation with Platinum or Rhodium , 1997 .

[6]  Y. Mergler,et al.  NO Reduction by CO over Pt/Al 2O 3and Pt/CeO x /Al 2O 3: Oscillations and Deactivation , 1996 .

[7]  N. Essayem,et al.  Influence of the activation temperature on the metal accessibility in model three-way catalysts , 1996 .

[8]  A. Datye,et al.  Comparison of metal-support interactions in pt/TiO2 and Pt/CeO2 , 1995 .

[9]  R. Mccabe,et al.  The effect of alumina phase structure on the dispersion of rhodium/alumina catalysts , 1995 .

[10]  V. Perrichon,et al.  Palladium–ceria catalysts: reversibility of hydrogen chemisorption and redox phenomena , 1995 .

[11]  R. Cataluña,et al.  NO reaction at surface oxygen vacancies generated in cerium oxide , 1995 .

[12]  C. H. Rochester,et al.  IR spectroscopic study of butane and propene adsorption on Pt/CeO2–Al2O3 catalysts , 1995 .

[13]  N. Essayem,et al.  Preparation of alumina supported ceria. I: Selective measurement of the surface area of ceria and free alumina , 1995 .

[14]  R. Keiski,et al.  An infrared study of CO and NO adsorption on Pt, Rh, Pd 3-way catalysts , 1995 .

[15]  R. Cataluña,et al.  Effect of the CeO2 dispersion on alumina on its reactivity for co and no conversion , 1995 .

[16]  C. Géron,et al.  Effect of the preparation procedure on the properties of three-way automotive platinum-rhodium/alumina-ceria catalysts , 1994 .

[17]  G. Graham,et al.  Why Rhodium in Automotive Three-Way Catalysts? , 1994 .

[18]  J. Lavalley,et al.  A Spectroscopic Characterization of the Reduction of Ceria from Electronic Transitions of Intrinsic Point Defects , 1994 .

[19]  G. Bond,et al.  The Form of Hydrogen Chemisorption Isotherms on a Pt/SiO2 Catalyst (EUROPT-1) , 1994 .

[20]  X. Verykios,et al.  Structural alterations of highly dispersed Rh/TiO2 catalyst upon CO adsorption and desorption investigated by infrared spectroscopy , 1994 .

[21]  J. Herrmann,et al.  Influence of the reduction/evacuation conditions on the rate of hydrogen spillover on Rh/CeO2 catalysts , 1994 .

[22]  F. Bozon-Verduraz,et al.  IR studies of cerium dioxide: influence of impurities and defects , 1994 .

[23]  D. Suh,et al.  Hydrogen/oxygen titration method for measurement of Pd dispersion on supported catalysts , 1994 .

[24]  D. D. Beck,et al.  Surface enrichment of Pt10Rh90(111): II. Exposure to high temperature environments at 760 Torr , 1993 .

[25]  Jeffrey T. Miller,et al.  Hydrogen Temperature-Programmed Desorption (H2 TPD) of Supported Platinum Catalysts , 1993 .

[26]  S. Chuang,et al.  Infrared study of the formation of Rh+ (CO)2 over RhCl3/SiO2 and its reactivity with NO , 1993 .

[27]  P. B. Rasband,et al.  Catalyst Characterization Using Quantitative FTIR: CO on Supported Rh , 1993 .

[28]  V. Perrichon,et al.  Reversibility of hydrogen chemisorption on a ceria-supported rhodium catalyst , 1992 .

[29]  A. Guerrero-Ruíz,et al.  Sulfur-resistant carbon-supported iridium catalysts: Cyclohexane dehydrogenation and benzene hydrogenation , 1992 .

[30]  M. Primet,et al.  Sulfur poisoning and regeneration of palladium-based catalysts. Part 1.—Dehydrogenation of cyclohexane on Pd/Al2O3 and Pd/SiO2–Al2O3 catalysts , 1992 .

[31]  J. Calvino,et al.  The key role of highly dispersed rhodium in the chemistry of hydrogen-ceria systems , 1992 .

[32]  D. Duprez,et al.  Characterization of Bimetallic Surfaces by 18O/16O Isotopic Exchange. Application to the Study of the Sintering of PtRh/Al2O3 Catalysts. , 1991 .

[33]  James A. Anderson,et al.  Infrared study of CO adsorption on Pt–Rh/Al2O3 catalysts , 1991 .

[34]  B. Legrand,et al.  Surface segregation in PtRh alloys revisited in the framework of the tight-binding Ising model , 1990 .

[35]  B. E. Nieuwenhuys,et al.  An infrared study of the interaction of CO and NO with a silica supported Pt-Rh alloy catalyst , 1990 .

[36]  R. Fréty,et al.  Determination of the Accessible Metallic Surface of Supported Platinum Quantitative Infrared Spectroscopic Study of Carbon Monoxide Adsorption , 1990 .

[37]  R. Fréty,et al.  Supported iridium catalysts: Comparison between resistance to sulphur poisoning and hydrodesulphurization properties , 1990 .

[38]  J. H. Kim,et al.  High‐pressure equations of state of krypton and xenon by a statistical mechanical theory , 1989 .

[39]  B. E. Nieuwenhuys,et al.  The transient behaviour of Pt-Rh(410) alloy surfaces upon interaction with O2, No and CO , 1989 .

[40]  R. Fréty,et al.  Iridium supported catalysts. variation of sulfur coverage with the nature of the carrier , 1989 .

[41]  F. Solymosi,et al.  Effect of NO on the CO-induced disruption of rhodium crystallites , 1988 .

[42]  R. Dictor An infrared study of the behavior of CO, NO, and CO + NO over Rh/Al2O3 catalysts , 1988 .

[43]  D. D. Beck,et al.  A study of thermal aging of Pt/Al2O3 using temperature-programmed desorption spectroscopy , 1988 .

[44]  J. Yates,et al.  Rhodium-carbon monoxide surface chemistry: the involvement of surface hydroxyl groups on alumina and silica supports , 1988 .

[45]  A. Crucq,et al.  Catalysis and Automotive Pollution Control , 1987 .

[46]  R. Fréty,et al.  Resistance to sulfur poisoning of metal catalysts: dehydrogenation of cyclohexane on Pt/Al2O3 catalysts , 1987 .

[47]  Miguel Ángel Asensio Sánchez,et al.  Oxygen vacancy model in strong metal-support interaction , 1987 .

[48]  B. Cooper,et al.  Aspects of Automotive Catalyst Preparation, Performance and Durability , 1987 .

[49]  J. Niemantsverdriet,et al.  Surface composition of Pt-Rh alloys : the role of lattice vibrational entropy , 1986 .

[50]  F. Solymosi,et al.  An infrared study of the influence of carbon monoxide chemisorption on the topology of supported rhodium , 1985 .

[51]  A. Pijpers,et al.  Surface Characterization of Supported and Nonsupported Hydrogenation Catalysts , 1985 .

[52]  M. Primet Electronic transfer and ligand effects in the infrared spectra of adsorbed carbon monoxide , 1984 .

[53]  H. C. Yao,et al.  Ceria in automotive exhaust catalysts: I. Oxygen storage , 1984 .

[54]  J. Yates,et al.  Site distribution studies of Rh supported on Al2O3—An infrared study of chemisorbed CO , 1981 .

[55]  G. Somorjai,et al.  THE STRUCTURE SENSITIVITY OF CYCLOHEXANE DEHYDROGENATION AND HYDROGENOLYSIS CATALYZED BY PLATINUM SINGLE CRYSTALS AT ATMOSPHERIC PRESSURE , 1981 .

[56]  G. Ghiotti,et al.  Infrared study of the adsorption of nitrous oxide on (ETA)-alumina , 1980 .

[57]  C. A. Hutchison,et al.  The determination of deuterium atom coordinates and nuclear quadrupole interactions in lanthanum nicotinate dihydrate crystals by Nd3+–deuterium double resonance , 1980 .

[58]  J. M. Stevenson,et al.  Surface characterization of supported PtPd bimetallic clusters using infrared spectroscopy , 1979 .

[59]  J. C. Summers,et al.  Interaction of cerium oxide with noble metals , 1979 .

[60]  M. Boudart Structure of metallic catalysts , 1978 .

[61]  H. Arai,et al.  An infrared study of nitric oxide adsorbed on rhodium-alumina catalyst , 1976 .

[62]  G. Somorjai,et al.  The dehydrogenation and hydrogenolysis of cyclohexane and cyclohexene on stepped (high miller index) platinum surfaces , 1976 .

[63]  E. Garbowski,et al.  Influence of metal particle size on the chemisorption properties of supported platinum. Analogy with cluster compounds , 1975 .

[64]  L. Cerruti,et al.  Infra-red study of nitric oxide adsorption on magnesium oxide , 1974 .

[65]  M. Unland Isocyanate intermediates in the reaction of NO and CO over noble metal catalysts , 1973 .

[66]  A. Mitrofanova,et al.  MITOHEDRIC METHOD FOR INVESTIGATION OF ACTIVE CENTERS OF CRYSTALLINE PLATINUM IN DEHYDROGENATION REACTIONS OF ORGANIC COMPOUNDS , 1972 .

[67]  J. Clarke,et al.  Catalysis on Supported Metals , 1972 .

[68]  P. Mahaffy,et al.  The preparation of Pt-alumina catalyst and its role in cyclohexane dehydrogenation , 1971 .

[69]  F. Figueras,et al.  Étude cinétique de la déshydrogénation du cyclohexane en phase vapeur sur catalyseur platine-silice , 1969 .

[70]  J. Sinfelt,et al.  The catalytic activity of rhodium in relation to its state of dispersion , 1967 .

[71]  J. Sinfelt,et al.  Chemisorption and catalytic properties of supported platinum , 1966 .

[72]  J. E. Benson,et al.  Hydrogen-oxygen titration method for the measurement of supported palladium surface areas , 1965 .

[73]  G. Blyholder,et al.  Molecular Orbital View of Chemisorbed Carbon Monoxide , 1964 .

[74]  C. Garland,et al.  Infrared Studies of Carbon Monoxide Chemisorbed on Rhodium , 1957 .

[75]  B. Crawford,et al.  The Preparation and Infrared Spectra of the Oxides of Nitrogen , 1954 .