Elastic solutions for a transversely isotropic half‐space subjected to a point load

SUMMARY We rederive and present the complete closed-form solutions of the displacements and stresses subjected to a point load in a transversely isotropic elastic half-space. The half-space is bounded by a horizontal surface, and the plane of transverse isotropy of the medium is parallel to the horizontal surface. The solutions are obtained by superposing the solutions of two infinite spaces, one acting a point load in its interior and the other being free loading. The Fourier and Hankel transforms in a cylindrical co-ordinate system are employed for deriving the analytical solutions. These solutions are identical with the Mindlin and Boussinesq solutions if the half-space is homogeneous, linear elastic, and isotropic. Also, the Lekhnitskii solution for a transversely isotropic half-space subjected to a vertical point load on its horizontal surface is one of these solutions. Furthermore, an illustrative example is given to show the e⁄ect of degree of rock anisotropy on the vertical surface displacement and vertical stress that are induced by a single vertical concentrated force acting on the surface. The results indicate that the displacement and stress accounted for rock anisotropy are quite di⁄erent for the displacement and stress calculated from isotropic solutions. ( 1998 John Wiley & Sons, Ltd.

[1]  Raymond D. Mindlin,et al.  Nuclei of Strain in the Semi‐Infinite Solid , 1950 .

[2]  Generalization of Elliott's Solution to Transversely Isotropic Elasticity Problems in Cartesian Coordinates , 1989 .

[3]  T. Chou,et al.  Green’s Functions for Two-Phase Transversely Isotropic Materials , 1979 .

[4]  J. Willis,et al.  THE ELASTIC INTERACTION ENERGY OF DISLOCATION LOOPS IN ANISOTROPIC MEDIA , 1965 .

[5]  Bernard Amadei,et al.  Gravitational stresses in anisotropic rock masses , 1987 .

[6]  Tsu-Wei Chou,et al.  Point Force Solution for an Infinite Transversely Isotropic Solid , 1976 .

[7]  J. Piquer,et al.  Stress Distribution In Cross - Anisotropic Media , 1966 .

[8]  A. Lodge THE TRANSFORMATION TO ISOTROPIC FORM OF THE EQUILIBRIUM EQUATIONS FOR A CLASS OF ANISOTROPIC ELASTIC SOLIDS , 1955 .

[9]  D. J. Pickering ANISOTROPIC ELASTIC PARAMETERS FOR SOIL , 1970 .

[10]  I. N. Sneddon,et al.  The elastic stresses produced by the indentation of the plane surface of a semi-infinite elastic solid by a rigid punch , 1945, Mathematical Proceedings of the Cambridge Philosophical Society.

[11]  A fundamental solution for a transversely isotropic elastic space , 1987 .

[12]  J. Michell The Stress in an Æolotrophic Elastic Solid with an Infinite Plane Boundary , 1900 .

[13]  V. Cerruti Sulla deformazione di un corpo elastico isotropo per alcune speciali condizioni ai limiti , 1893 .

[14]  H. A. Elliott,et al.  Three-dimensional stress distributions in hexagonal aeolotropic crystals , 1948, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  B. R. Sen,et al.  Stresses and displacements in granular materials due to surface load , 1975 .

[16]  K. Wolf,et al.  Hauptaufsätze. Ausbreitung der Kraft in der Halbebene und im Halbraum bei anisotropem Material , 1935 .

[17]  A. Maradudin,et al.  An Introduction To Applied Anisotropic Elasticity , 1961 .

[18]  M. Hanson,et al.  Concentrated ring loadings in a full space or half space: solutions for transverse isotropy and isotropy , 1997 .

[19]  K. L. Chowdhury On the axisymmetric Mindlin's problem for a semi-space of granular material , 1987 .

[20]  L. Barden Stresses and Displacements in a Cross-Anisotropic Soil , 1963 .

[21]  V. I. Fabrikant,et al.  Applications of Potential Theory in Mechanics: A Selection of New Results , 1989 .

[22]  W. R. Dean,et al.  A type of stress distribution on the surface of a semi-infinite elastic solid , 1944, Mathematical Proceedings of the Cambridge Philosophical Society.

[23]  J. D. Geddes Stresses in Foundation Soils Due to Vertical Subsurface Loading , 1966 .

[24]  W. T. Chen On Some Problems in Transversely Isotropic Elastic Materials , 1966 .

[25]  F. B. Hildebrand Advanced Calculus for Applications , 1962 .

[26]  E. Kröner,et al.  Das Fundamentalintegral der anisotropen elastischen Differentialgleichungen , 1953 .

[27]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[28]  E. Sternberg,et al.  ON THE AXISYMMETRIC PROBLEM OF ELASTICITY THEORY FOR A MEDIUM W9T8 TRANSVERSE ISOTROPY , 1954 .

[29]  Boussinesq type problems for the anisotropio half-space , 1964 .

[30]  Leon M Keer,et al.  Analysis of a transversely isotropic half space under normal and tangential loadings , 1991 .

[31]  A. Green,et al.  Notes on problems in hexagonal aeolotropic materials , 1951, Mathematical Proceedings of the Cambridge Philosophical Society.