Augmenting supersaturated designs with Bayesian D-optimality

A methodology is developed to add runs to existing supersaturated designs. The technique uses information from the analysis of the initial experiment to choose the best possible follow-up runs. After analysis of the initial data, factors are classified into one of three groups: primary, secondary, and potential. Runs are added to maximize a Bayesian D -optimality criterion to increase the information gained about those factors. Simulation results show the method can outperform existing supersaturated design augmentation strategies that add runs without analyzing the initial response variables.

[1]  Dennis K. J. Lin,et al.  Bayesian D-optimal supersaturated designs , 2008 .

[2]  Dennis K. J. Lin Generating Systematic Supersaturated Designs , 1995 .

[3]  R. Daniel Meyer,et al.  An Analysis for Unreplicated Fractional Factorials , 1986 .

[4]  Michael Jackson,et al.  Optimal Design of Experiments , 1994 .

[5]  Dennis K. J. Lin Ch. 2. Industrial experimentation for screening , 2003 .

[6]  Joseph G. Pigeon,et al.  Statistics for Experimenters: Design, Innovation and Discovery , 2006, Technometrics.

[7]  Addition of runs to a two-level supersaturated design , 2010 .

[8]  R. Plackett,et al.  THE DESIGN OF OPTIMUM MULTIFACTORIAL EXPERIMENTS , 1946 .

[9]  Angela R. Neff,et al.  Bayesian Two Stage Design Under Model Uncertainty , 1997 .

[10]  Dibyen Majumdar,et al.  Optimal Supersaturated Designs , 2014 .

[11]  Nam-Ky Nguyen An algorithmic approach to constructing supersaturated designs , 1996 .

[12]  David J. Edwards,et al.  Supersaturated designs: Are our results significant? , 2011, Comput. Stat. Data Anal..

[13]  Margaret J. Robertson,et al.  Design and Analysis of Experiments , 2006, Handbook of statistics.

[14]  Changbao Wu,et al.  Construction of supersaturated designs through partially aliased interactions , 1993 .

[15]  George E. P. Box,et al.  Follow-up designs to resolve confounding in multifactor experiments , 1996 .

[16]  George E. P. Box,et al.  GEORGE'S COLUMN , 1990 .

[17]  K. H. Booth,et al.  Some Systematic Supersaturated Designs , 1962 .

[18]  Stelios D. Georgiou,et al.  Supersaturated designs: A review of their construction and analysis , 2014 .

[19]  R. K. Meyer,et al.  The Coordinate-Exchange Algorithm for Constructing Exact Optimal Experimental Designs , 1995 .

[20]  K. Vijayan,et al.  Some Risks in the Construction and Analysis of Supersaturated Designs , 1999, Technometrics.

[21]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[22]  Peng Li,et al.  A cluster analysis selection strategy for supersaturated designs , 2010, Comput. Stat. Data Anal..

[23]  J. Kiefer,et al.  Optimum Designs in Regression Problems , 1959 .

[24]  W. DuMouchel,et al.  A simple Bayesian modification of D-optimal designs to reduce dependence on an assumed model , 1994 .

[25]  K. Chaloner,et al.  Bayesian Experimental Design: A Review , 1995 .

[26]  Anthony C. Atkinson,et al.  Optimum Experimental Designs , 1992 .

[27]  Dennis K. J. Lin,et al.  A new class of supersaturated designs , 1993 .

[28]  Stelios D. Georgiou,et al.  Modelling by supersaturated designs , 2008, Comput. Stat. Data Anal..

[29]  C. F. Jeff Wu,et al.  Experiments: Planning, Analysis, and Parameter Design Optimization , 2000 .

[30]  Ching-Shui Cheng,et al.  E(s 2 )-OPTIMAL SUPERSATURATED DESIGNS , 1997 .

[31]  Christopher J. Marley,et al.  A comparison of design and model selection methods for supersaturated experiments , 2010, Comput. Stat. Data Anal..

[32]  Ashish Das,et al.  E(s2)-optimalE(s2)-optimal supersaturated designs with odd number of runs , 2010 .

[33]  C. Daniel Use of Half-Normal Plots in Interpreting Factorial Two-Level Experiments , 1959 .

[34]  Martina Vandebroek,et al.  Bayesian sequential D-D optimal model-robust designs , 2004, Comput. Stat. Data Anal..

[35]  F. E. Satterthwaite Random Balance Experimentation , 1959 .

[36]  Dursun A. Bulutoglu,et al.  Construction of E(s^2)-optimal supersaturated designs , 2004 .

[37]  R. D. Meyer,et al.  Finding the Active Factors in Fractionated Screening Experiments , 1993 .

[38]  Bradley Jones,et al.  Discussion: follow-up designs to resolve confounding in multifactor experiments , 1996 .