Aquaporin-4 expression and modulation in a rat model of post-traumatic syringomyelia

[1]  J. Iliff,et al.  Emerging roles for dynamic aquaporin-4 subcellular relocalization in CNS water homeostasis , 2021, Brain : a journal of neurology.

[2]  H. Vogel,et al.  Targeting Aquaporin-4 Subcellular Localization to Treat Central Nervous System Edema , 2020, Cell.

[3]  L. Bilston,et al.  Abnormalities in spinal cord ultrastructure in a rat model of post-traumatic syringomyelia , 2020, Fluids and Barriers of the CNS.

[4]  J. Foster,et al.  Hydromyelia. , 2020, Journal of the neurological sciences.

[5]  Monya Baker,et al.  Reporting animal research: Explanation and Elaboration for the ARRIVE guidelines 2019 , 2019, bioRxiv.

[6]  Yuan Huang,et al.  The Dual Role of AQP4 in Cytotoxic and Vasogenic Edema Following Spinal Cord Contusion and Its Possible Association With Energy Metabolism via COX5A , 2019, Front. Neurosci..

[7]  Yang Cao,et al.  TGN‐020 alleviates edema and inhibits astrocyte activation and glial scar formation after spinal cord compression injury in rats , 2019, Life sciences.

[8]  R. Bill,et al.  Inhibitors of Mammalian Aquaporin Water Channels , 2019, International journal of molecular sciences.

[9]  L. Bilston,et al.  Effect of extradural constriction on CSF flow in rat spinal cord , 2019, Fluids and Barriers of the CNS.

[10]  H. Hirase,et al.  Aquaporin-4-dependent glymphatic solute transport in the rodent brain , 2018, eLife.

[11]  Xiaodong Yan,et al.  Pretreatment with AQP4 and NKCC1 Inhibitors Concurrently Attenuated Spinal Cord Edema and Tissue Damage after Spinal Cord Injury in Rats , 2018, Front. Physiol..

[12]  R. Carare,et al.  Inhibition of Aquaporin-4 Improves the Outcome of Ischaemic Stroke and Modulates Brain Paravascular Drainage Pathways , 2017, International journal of molecular sciences.

[13]  L. Bilston,et al.  The ultrastructure of spinal cord perivascular spaces: Implications for the circulation of cerebrospinal fluid , 2017, Scientific Reports.

[14]  O. Ottersen,et al.  Factors determining the density of AQP4 water channel molecules at the brain–blood interface , 2016, Brain Structure and Function.

[15]  A. Bongers,et al.  Longitudinal measurements of syrinx size in a rat model of posttraumatic syringomyelia. , 2016, Journal of neurosurgery. Spine.

[16]  L. Bilston,et al.  Direct-trauma model of posttraumatic syringomyelia with a computer-controlled motorized spinal cord impactor. , 2016, Journal of neurosurgery. Spine.

[17]  J. Simard,et al.  Mechanisms of Astrocyte-Mediated Cerebral Edema , 2015, Neurochemical Research.

[18]  Xiu-Miao Li,et al.  Aquaporin-4 Mitigates Retrograde Degeneration of Rubrospinal Neurons by Facilitating Edema Clearance and Glial Scar Formation After Spinal Cord Injury in Mice , 2014, Molecular Neurobiology.

[19]  L. Bilston,et al.  Aquaporin-4 expression in post-traumatic syringomyelia. , 2013, Journal of neurotrauma.

[20]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[21]  G. E. Vates,et al.  A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma and the Clearance of Interstitial Solutes, Including Amyloid β , 2012, Science Translational Medicine.

[22]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[23]  T. Nakada,et al.  Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema , 2010, Neurological Sciences.

[24]  D. Okonkwo,et al.  Surgical Management of Post-Traumatic Syringomyelia , 2010, Spine.

[25]  P. Narayana,et al.  Aquaporins in spinal cord injury: the janus face of aquaporin 4 , 2010, Neuroscience.

[26]  R. S. Stainton,et al.  OR—a personal perspective , 2010, J. Oper. Res. Soc..

[27]  S. Hemley,et al.  Role of the blood-spinal cord barrier in posttraumatic syringomyelia. , 2009, Journal of neurosurgery. Spine.

[28]  M. Papadopoulos,et al.  Greatly improved neurological outcome after spinal cord compression injury in AQP4-deficient mice. , 2008, Brain : a journal of neurology.

[29]  G. Manley,et al.  Greatly impaired migration of implanted aquaporin‐4‐deficient astroglial cells in mouse brain toward a site of injury , 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[30]  C. Hulsebosch,et al.  Acute and chronic changes in aquaporin 4 expression after spinal cord injury , 2006, Neuroscience.

[31]  Á. Carroll,et al.  Post-Traumatic Syringomyelia: A Review Of the Cases Presenting in a Regional Spinal Injuries Unit in the North East of England Over a 5-Year Period , 2005, Spine.

[32]  M. Papadopoulos,et al.  Aquaporin-4 Gene Disruption in Mice Reduces Brain Swelling and Mortality in Pneumococcal Meningitis* , 2005, Journal of Biological Chemistry.

[33]  M. Papadopoulos,et al.  Water transport becomes uncoupled from K+ siphoning in brain contusion, bacterial meningitis, and brain tumours: immunohistochemical case review , 2003, Journal of clinical pathology.

[34]  A. Brodbelt,et al.  Post-traumatic syringomyelia: a review , 2003, Journal of Clinical Neuroscience.

[35]  Jian Tu,et al.  Fluid flow in an animal model of post-traumatic syringomyelia , 2003, European Spine Journal.

[36]  C. Honey,et al.  Regulation of aquaporin-4 in a traumatic brain injury model in rats. , 2003, Journal of neurosurgery.

[37]  U. Batzdorf Primary spinal syringomyelia: a personal perspective. , 2000, Neurosurgical focus.

[38]  P. Agre,et al.  Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[39]  P. Agre,et al.  Specialized Membrane Domains for Water Transport in Glial Cells: High-Resolution Immunogold Cytochemistry of Aquaporin-4 in Rat Brain , 1997, The Journal of Neuroscience.

[40]  B. Schurch,et al.  Post-traumatic syringomyelia (cystic myelopathy): a prospective study of 449 patients with spinal cord injury. , 1996, Journal of neurology, neurosurgery, and psychiatry.

[41]  S. Barbieri,et al.  The natural history and results of surgery in 50 cases of syringomyelia , 1991, Journal of Neurology.

[42]  A. Rossier,et al.  Posttraumatic cervical syringomyelia. Incidence, clinical presentation, electrophysiological studies, syrinx protein and results of conservative and operative treatment. , 1985, Brain : a journal of neurology.

[43]  W. Michelsen,et al.  Hydromyelia: clinical presentation and comparison of modalities of treatment. , 1981, Neurosurgery.

[44]  S. Hostiuc,et al.  Three-dimensional organ scanning reveals brain edema reduction in a rat model of stroke treated with an aquaporin 4 inhibitor. , 2017, Romanian journal of morphology and embryology = Revue roumaine de morphologie et embryologie.

[45]  J. Burton Aquaporins: gatekeepers of oedema in traumatic brain injury. , 2014 .

[46]  H. Rekate,et al.  Hydrocephalus and aquaporins: the role of aquaporin-4. , 2012, Acta neurochirurgica. Supplement.

[47]  G. Manley,et al.  Role of aquaporin-4 in cerebral edema and stroke. , 2009, Handbook of experimental pharmacology.

[48]  A. Marmarou,et al.  Modulation of AQP4 expression by the selective V1a receptor antagonist, SR49059, decreases trauma-induced brain edema. , 2008, Acta neurochirurgica. Supplement.

[49]  A. Marmarou,et al.  Modulation of aquaporin-4 water transport in a model of TBI. , 2003, Acta neurochirurgica. Supplement.

[50]  A. Brodbelt,et al.  Syringomyelia and the arachnoid web , 2003, Acta Neurochirurgica.

[51]  Robert C. Wolpert,et al.  A Review of the , 1985 .