Learning Feature Sparse Principal Subspace
暂无分享,去创建一个
Xuelong Li | Feiping Nie | Rong Wang | Lai Tian | Xuelong Li | F. Nie | Rong Wang | Lai Tian
[1] Dimitris S. Papailiopoulos,et al. Sparse PCA through Low-rank Approximations , 2013, ICML.
[2] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[3] Jianhua Z. Huang,et al. Sparse principal component analysis via regularized low rank matrix approximation , 2008 .
[4] Feiping Nie,et al. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Exact Top-k Feature Selection via ℓ2,0-Norm Constraint , 2022 .
[5] Vincent Q. Vu,et al. MINIMAX SPARSE PRINCIPAL SUBSPACE ESTIMATION IN HIGH DIMENSIONS , 2012, 1211.0373.
[6] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[7] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[8] I. Johnstone,et al. On Consistency and Sparsity for Principal Components Analysis in High Dimensions , 2009, Journal of the American Statistical Association.
[9] Xiao-Tong Yuan,et al. Truncated power method for sparse eigenvalue problems , 2011, J. Mach. Learn. Res..
[10] Manuel Blum,et al. Time Bounds for Selection , 1973, J. Comput. Syst. Sci..
[11] Alexandre d'Aspremont,et al. Clustering and feature selection using sparse principal component analysis , 2007, ArXiv.
[12] Christos H. Papadimitriou,et al. On the Eigenvalue Power Law , 2002, RANDOM.
[13] Michael I. Jordan,et al. A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..
[14] Oluwasanmi Koyejo,et al. Sparse Submodular Probabilistic PCA , 2015, AISTATS.
[15] Zhenhua Guo,et al. Sparse Principal Component Analysis via Joint L 2, 1-Norm Penalty , 2013, Australasian Conference on Artificial Intelligence.
[16] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[17] Yurii Nesterov,et al. Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..
[18] Paul Tseng,et al. Partial Proximal Minimization Algorithms for Convex Pprogramming , 1994, SIAM J. Optim..
[19] K. Lange,et al. The MM Alternative to EM , 2010, 1104.2203.
[20] Feiping Nie,et al. Optimal Mean Robust Principal Component Analysis , 2014, ICML.
[21] Dimitris S. Papailiopoulos,et al. Sparse PCA via Bipartite Matchings , 2015, NIPS.
[22] Shai Avidan,et al. Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms , 2005, NIPS.
[23] Zhaoran Wang,et al. Tighten after Relax: Minimax-Optimal Sparse PCA in Polynomial Time , 2014, NIPS.
[24] Abhisek Kundu,et al. Recovering PCA and Sparse PCA via Hybrid-(l1, l2) Sparse Sampling of Data Elements , 2017, J. Mach. Learn. Res..
[25] Jiawei Han,et al. Joint Feature Selection and Subspace Learning , 2011, IJCAI.
[26] Charles Bouveyron,et al. Bayesian Variable Selection for Globally Sparse Probabilistic PCA , 2016, 1605.05918.
[27] Michalis Faloutsos,et al. On power-law relationships of the Internet topology , 1999, SIGCOMM '99.
[28] Ying Cui,et al. Convex Principal Feature Selection , 2010, SDM.
[29] Ajmal S. Mian,et al. Joint Group Sparse PCA for Compressed Hyperspectral Imaging , 2015, IEEE Transactions on Image Processing.
[30] Christos Boutsidis,et al. Optimal Sparse Linear Encoders and Sparse PCA , 2016, NIPS.
[31] Feiping Nie,et al. Exploiting Combination Effect for Unsupervised Feature Selection by $\ell_{2,0}$ Norm , 2019, IEEE Transactions on Neural Networks and Learning Systems.
[32] Stephen P. Boyd,et al. Variations and extension of the convex–concave procedure , 2016 .
[33] Feiping Nie,et al. Efficient and Robust Feature Selection via Joint ℓ2, 1-Norms Minimization , 2010, NIPS.
[34] Li Fan,et al. Web caching and Zipf-like distributions: evidence and implications , 1999, IEEE INFOCOM '99. Conference on Computer Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies. The Future is Now (Cat. No.99CH36320).
[35] Feiping Nie,et al. Robust Principal Component Analysis with Non-Greedy l1-Norm Maximization , 2011, IJCAI.
[36] Allen Y. Yang,et al. Informative feature selection for object recognition via Sparse PCA , 2011, 2011 International Conference on Computer Vision.
[37] Anru R. Zhang,et al. Optimal Sparse Singular Value Decomposition for High-Dimensional High-Order Data , 2018, Journal of the American Statistical Association.
[38] Dimitris S. Papailiopoulos,et al. Nonnegative Sparse PCA with Provable Guarantees , 2014, ICML.
[39] Jing Lei,et al. Fantope Projection and Selection: A near-optimal convex relaxation of sparse PCA , 2013, NIPS.
[40] Huan Xu,et al. Streaming Sparse Principal Component Analysis , 2015, ICML.
[41] Aviad Rubinstein,et al. On the Approximability of Sparse PCA , 2016, COLT.
[42] Prabhu Babu,et al. Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning , 2017, IEEE Transactions on Signal Processing.
[43] Alan L. Yuille,et al. The Concave-Convex Procedure (CCCP) , 2001, NIPS.
[44] Tat-Seng Chua,et al. NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.
[45] Dan Yang,et al. Rate Optimal Denoising of Simultaneously Sparse and Low Rank Matrices , 2014, J. Mach. Learn. Res..
[46] Lester W. Mackey,et al. Deflation Methods for Sparse PCA , 2008, NIPS.
[47] Vincent Q. Vu,et al. Sparsistency and agnostic inference in sparse PCA , 2014, 1401.6978.