New concise upper bounds on quantum violation of general multipartite Bell inequalities

Last years, bounds on the maximal quantum violation of general Bell inequalities were intensively discussed in the literature via different mathematical tools. In the present paper, we analyze quantum violation of general Bell inequalities via the LqHV (local quasi hidden variable) modelling framework, correctly reproducing the probabilistic description of every quantum correlation scenario. The LqHV mathematical framework allows us to derive for all d and N a new upper bound (2d − 1)N−1 on the maximal violation by an N-qudit state of all general Bell inequalities, also, new upper bounds on the maximal violation by an N-qudit state of general Bell inequalities for S settings per site. These new upper bounds essentially improve all the known precise upper bounds on quantum violation of general multipartite Bell inequalities. For some S, d, and N, the new upper bounds are attainable.

[1]  Thomas Vidick,et al.  Explicit Lower and Upper Bounds on the Entangled Value of Multiplayer XOR Games , 2011 .

[2]  Sophie Laplante,et al.  The communication complexity of non-signaling distributions , 2008, Quantum Inf. Comput..

[3]  Elena R. Loubenets,et al.  Nonsignaling as the consistency condition for local quasi-classical probability modeling of a general multipartite correlation scenario , 2011, 1109.0225.

[4]  M. Junge,et al.  Large Violation of Bell Inequalities with Low Entanglement , 2010, 1007.3043.

[5]  B. S. Cirel'son Quantum generalizations of Bell's inequality , 1980 .

[6]  M. Wolf,et al.  Unbounded Violation of Tripartite Bell Inequalities , 2007, quant-ph/0702189.

[7]  B. Tsirelson Quantum analogues of the Bell inequalities. The case of two spatially separated domains , 1987 .

[8]  Locality of a noisy N-qudit state for large N , 2016 .

[9]  Quantum states satisfying classical probability constraints , 2004, quant-ph/0406139.

[10]  Elena R. Loubenets,et al.  Multipartite Bell-type inequalities for arbitrary numbers of settings and outcomes per site , 2008, 0804.4046.

[11]  Elena R. Loubenets,et al.  On the probabilistic description of a multipartite correlation scenario with arbitrary numbers of settings and outcomes per site , 2008, 0804.2398.

[12]  E. Loubenets Context-invariant quasi hidden variable (qHV) modelling of all joint von Neumann measurements for an arbitrary Hilbert space , 2014, 1402.4023.

[13]  Elena R. Loubenets,et al.  Local quasi hidden variable modelling and violations of Bell-type inequalities by a multipartite quantum state , 2011, 1104.2289.

[14]  Carlos Palazuelos,et al.  Survey on Nonlocal Games and Operator Space Theory , 2015, 1512.00419.

[15]  V. Scarani,et al.  Spectral decomposition of Bell's operators for qubits , 2001, quant-ph/0103068.

[16]  Context-Invariant and Local Quasi Hidden Variable (qHV) Modelling Versus Contextual and Nonlocal HV Modelling , 2015, 1503.07128.

[17]  M. Wolf,et al.  All-multipartite Bell-correlation inequalities for two dichotomic observables per site , 2001, quant-ph/0102024.

[18]  Stefan Zohren,et al.  Maximal violation of the Collins-Gisin-Linden-Massar-Popescu inequality for infinite dimensional states. , 2006, Physical review letters.

[19]  C. Palazuelos On the largest Bell violation attainable by a quantum state , 2012, 1206.3695.

[20]  Carlos Palazuelos,et al.  Reducing the number of questions in nonlocal games , 2016 .

[21]  M. Junge,et al.  REDUCING THE NUMBER OF INPUTS IN NONLOCAL GAMES , 2016 .