Weighted composite quantile regression for single index model with missing covariates at random

This paper considers weighted composite quantile estimation of the single-index model with missing covariates at random. Under some regularity conditions, we establish the large sample properties of the estimated index parameters and link function. The large sample properties of the parametric part show that the estimator with estimated selection probability have a smaller limiting variance than the one with the true selection probability. However, the large sample properties of the estimated link function indicate that whether weights were estimated or not has no effect on the asymptotic variance. Studies of simulation and the real data analysis are presented to illustrate the behavior of the proposed estimators.

[1]  James M. Robins,et al.  Estimation in Partially Linear Models With Missing Covariates , 2004 .

[2]  Hua Liang,et al.  Generalized Partially Linear Models With Missing Covariates. , 2008, Journal of multivariate analysis.

[3]  Heung Wong,et al.  On locally weighted estimation and hypothesis testing of varying-coefficient models with missing covariates , 2009 .

[4]  H. Tong,et al.  Article: 2 , 2002, European Financial Services Law.

[5]  D. Horvitz,et al.  A Generalization of Sampling Without Replacement from a Finite Universe , 1952 .

[6]  Runze Li,et al.  NEW EFFICIENT ESTIMATION AND VARIABLE SELECTION METHODS FOR SEMIPARAMETRIC VARYING-COEFFICIENT PARTIALLY LINEAR MODELS. , 2011, Annals of statistics.

[7]  W. Härdle,et al.  Semi-parametric estimation of partially linear single-index models , 2006 .

[8]  Yingcun Xia,et al.  An adaptive composite quantile approach to dimension reduction , 2014 .

[9]  Lan Wang,et al.  Weighted quantile regression for analyzing health care cost data with missing covariates , 2013, Statistics in medicine.

[10]  H. Zou,et al.  Composite quantile regression and the oracle Model Selection Theory , 2008, 0806.2905.

[11]  Hu Yang,et al.  Estimation and variable selection in single-index composite quantile regression , 2017, Commun. Stat. Simul. Comput..

[12]  D. Pollard,et al.  Asymptotics for minimisers of convex processes , 2011, 1107.3806.

[13]  B. Silverman,et al.  Weak and strong uniform consistency of kernel regression estimates , 1982 .

[14]  Ker-Chau Li,et al.  On Principal Hessian Directions for Data Visualization and Dimension Reduction: Another Application of Stein's Lemma , 1992 .

[15]  D. Rubin,et al.  Statistical Analysis with Missing Data. , 1989 .

[16]  Thomas M. Stoker,et al.  Investigating Smooth Multiple Regression by the Method of Average Derivatives , 2015 .

[17]  Raymond J. Carroll,et al.  Local Linear Regression for Generalized Linear Models with Missing Data , 1998 .

[18]  Tao Huang,et al.  Penalized least squares for single index models , 2011 .

[19]  C Y Wang,et al.  Augmented Inverse Probability Weighted Estimator for Cox Missing Covariate Regression , 2001, Biometrics.

[20]  Riquan Zhang,et al.  Quantile regression and variable selection for the single-index model , 2014 .

[21]  Xiaochao Xia,et al.  Robust estimation and variable selection in censored partially linear additive models , 2017 .

[22]  Lixing Zhu,et al.  Multi-index regression models with missing covariates at random , 2014, J. Multivar. Anal..

[23]  Hu Yang,et al.  Inverse probability weighted estimators for single-index models with missing covariates , 2016 .

[24]  Yan Yu,et al.  Single-index quantile regression , 2010, J. Multivar. Anal..

[25]  Keith Knight,et al.  Limiting distributions for $L\sb 1$ regression estimators under general conditions , 1998 .

[26]  Ker-Chau Li,et al.  Sliced Inverse Regression for Dimension Reduction , 1991 .

[27]  Wei-Min Qian,et al.  Single-index composite quantile regression , 2012 .

[28]  Kjell A. Doksum,et al.  On average derivative quantile regression , 1997 .

[29]  Runze Li,et al.  Local composite quantile regression smoothing: an efficient and safe alternative to local polynomial regression , 2010 .

[30]  Riquan Zhang,et al.  B spline variable selection for the single index models , 2017 .

[31]  Hu Yang,et al.  Penalized weighted composite quantile estimators with missing covariates , 2016 .