A 0.0071-mm2 10.8pspp-Jitter 4 to 10-Gb/s 5-Tap Current-Mode Transmitter Using a Hybrid Delay Line for Sub-1-UI Fractional De-Emphasis

This paper proposes an ultra-compact 4 to 10-Gb/s 5-tap current-mode transmitter to realize the sub 1-UI fractional de-emphasis (DE) using a hybrid delay line, which is alternatively controlled by the voltage bias and clock. It exhibits the scalability between the clocked 0.5-UI and 1-UI DEs and data rate. The sub-1-UI DE provides wide tunability of the data amplitude and delay to compensate different channel losses between the <inline-formula> <tex-math notation="LaTeX">$1^{st}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$2^{nd}$ </tex-math></inline-formula> Nyquist frequencies while effectively compensating the high-frequency portion of the pseudo-random binary sequence (PRBS) spectrum for data jitter improvement. Additional techniques are a two-step current-summing scheme, namely, two-step DE in the data path, and active inductors in both the data and clock paths to enhance the internal bandwidth without the need for passive inductors. In addition, we present an analytical model for predicting data-dependent jitter (DDJ) based on a generic system’s step response, derive the exact closed-form DDJ expression of DE, and verify its validity by mean of circuit simulation. Prototyped in 65-nm CMOS technology, it achieves a figure-of-merit of 4.6 mW/Gb/s and an output jitter of 10.8 ps<sub><italic>pp</italic></sub> at 10 Gb/s under a PRBS <inline-formula> <tex-math notation="LaTeX">$2^{31}-1$ </tex-math></inline-formula> pattern. The data eyes measure 0.62-UI-horizontal and 19.5%-vertical openings after −20-dB channel loss. The die area is 0.0071 mm<sup>2</sup>.

[1]  Anthony Chan Carusone,et al.  A 32/16-Gb/s Dual-Mode Pulsewidth Modulation Pre-Emphasis (PWM-PE) Transmitter With 30-dB Loss Compensation Using a High-Speed CML Design Methodology , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Samuel Palermo,et al.  A 6-Gbit/s Hybrid Voltage-Mode Transmitter With Current-Mode Equalization in 90-nm CMOS , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  Anthony Chan Carusone,et al.  A 32/16 Gb/s 4/2-PAM transmitter with PWM pre-Emphasis and 1.2 Vpp per side output swing in 0.13-μm CMOS , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[4]  Wei Xiong,et al.  23.3 A 6Gb/s 3-tap FFE transmitter and 5-tap DFE receiver in 65nm/0.18µm CMOS for next-generation 8K displays , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[5]  S. Gowda,et al.  A 10-Gb/s 5-Tap DFE/4-Tap FFE Transceiver in 90-nm CMOS Technology , 2006, IEEE Journal of Solid-State Circuits.

[6]  A. Hajimiri,et al.  Data-dependent jitter in serial communications , 2005, IEEE Transactions on Microwave Theory and Techniques.

[7]  Pui-In Mak,et al.  An Area-Efficient and Tunable Bandwidth- Extension Technique for a Wideband CMOS Amplifier Handling 50+ Gb/s Signaling , 2017, IEEE Transactions on Microwave Theory and Techniques.

[8]  Pui-In Mak,et al.  A 27-Gb/s Time-Interleaved Duobinary Transmitter Achieving 1.44-mW/Gb/s FOM in 65-nm CMOS , 2017, IEEE Microwave and Wireless Components Letters.

[9]  Ali Hajimiri,et al.  Predicting data-dependent jitter , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Jun Fan,et al.  Signal Integrity Design for High-Speed Digital Circuits: Progress and Directions , 2010, IEEE Transactions on Electromagnetic Compatibility.

[11]  Mounir Meghelli,et al.  6.5 A 1.8pJ/b 56Gb/s PAM-4 transmitter with fractionally spaced FFE in 14nm CMOS , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[12]  Eric A. M. Klumperink,et al.  Pulse-width modulation pre-emphasis applied in a wireline transmitter, achieving 33 dB loss compensation at 5-Gb/s in 0.13-μm CMOS , 2006, VLSIC 2006.

[13]  Tzong-Lin Wu,et al.  Overview of Signal Integrity and EMC Design Technologies on PCB: Fundamentals and Latest Progress , 2013, IEEE Transactions on Electromagnetic Compatibility.

[14]  Eric A. M. Klumperink,et al.  Wireline equalization using pulse-width modulation , 2006, IEEE Custom Integrated Circuits Conference 2006.

[15]  Yan Wang,et al.  A Highly-Scalable Analog Equalizer Using a Tunable and Current-Reusable for 10-Gb/s I/O Links , 2015, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[16]  Pavan Kumar Hanumolu,et al.  A 5 Gb/s Energy-Efficient Voltage-Mode Transmitter Using Time-Based De-Emphasis , 2014, IEEE Journal of Solid-State Circuits.

[17]  Deog-Kyoon Jeong,et al.  A 28 Gb/s 1.6 pJ/b PAM-4 Transmitter Using Fractionally Spaced 3-Tap FFE and $G_{m}$ -Regulated Resistive-Feedback Driver , 2017, IEEE Transactions on Circuits and Systems II: Express Briefs.

[18]  B. Nauta,et al.  Pulse-width modulation pre-emphasis applied in a wireline transmitter, achieving 33 dB loss compensation at 5-Gb/s in 0.13-/spl mu/m CMOS , 2006, IEEE Journal of Solid-State Circuits.

[19]  Shen-Iuan Liu,et al.  A 5 Gb/s Voltage-Mode Transmitter Using Adaptive Time-Based De-Emphasis , 2017, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  Li Zhang,et al.  A 0.002-mm$^{2}$ 6.4-mW 10-Gb/s Full-Rate Direct DFE Receiver With 59.6% Horizontal Eye Opening Under 23.3-dB Channel Loss at Nyquist Frequency , 2014, IEEE Transactions on Microwave Theory and Techniques.

[21]  Mike Bichan,et al.  A 6.5 Gb/s backplane transmitter with 6-tap FIR equalizer and variable tap spacing , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[22]  Halil Cirit,et al.  A 10Gb/s half-UI IIR-tap transmitter in 40nm CMOS , 2011, 2011 IEEE International Solid-State Circuits Conference.

[23]  Pui-In Mak,et al.  A 36-Gb/s 1.3-mW/Gb/s Duobinary-Signal Transmitter Exploiting Power-Efficient Cross-Quadrature Clocking Multiplexers With Maximized Timing Margin , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[24]  Tejasvi Anand,et al.  Wireline Transceiver with Phase Domain Equalization Scheme : Integrated Pulse Width Modulation ( iPWM ) in 65 nm CMOS , .

[25]  Shen-Iuan Liu,et al.  A 1.62/2.7-Gb/s Adaptive Transmitter With Two-Tap Preemphasis Using a Propagation-Time Detector , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[26]  A. Hajimiri,et al.  Phase and amplitude pre-emphasis techniques for low-power serial links , 2006, IEEE Journal of Solid-State Circuits.

[27]  Pui-In Mak,et al.  Pre-emphasis transmitter (0.007 mm 2 , 8 Gbit/s, 0-14 dB) with improved data zero-crossing accuracy in 65 nm CMOS , 2013 .

[28]  Antonio Liscidini,et al.  Current-Mode, WCDMA Channel Filter With In-Band Noise Shaping , 2010, IEEE Journal of Solid-State Circuits.

[29]  Deog-Kyoon Jeong,et al.  A 1-pJ/bit, 10-Gb/s/ch Forwarded-Clock Transmitter Using a Resistive Feedback Inverter-Based Driver in 65-nm CMOS , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.