L N C IS 3 5 7 Biology and Control Theory : Current Challenges

Manuscripts should be written in English and be no less than 100, preferably no more than 500 pages. The manuscript in its final and approved version must be submitted in camera-ready form. You are strongly encouraged to use LATEX together with the corresponding Springer LATEX macro packages. The corresponding electronic files are also required for the production process, in particular the online version. Detailed instructions for authors can be found on the engineering site of our homepage: springer.com/series/642.

[1]  C. Thron The secant condition for instability in biochemical feedback control—I. The role of cooperativity and saturability , 1991 .

[2]  D. DeAngelis,et al.  Positive Feedback in Natural Systems , 1986 .

[3]  Eduardo D Sontag,et al.  Oscillations in multi-stable monotone systems with slowly varying feedback. , 2007, Journal of differential equations.

[4]  A. Goldbeter A model for circadian oscillations in the Drosophila period protein (PER) , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[5]  Sorin Istrail,et al.  Statistical Mechanics, Three-Dimensionality and NP-Completeness: I. Universality of Intractability of the Partition Functions of the Ising Model Across Non-Planar Lattices , 2000, STOC 2000.

[6]  David Angeli,et al.  Systems with counterclockwise input-output dynamics , 2006, IEEE Transactions on Automatic Control.

[7]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[8]  R. Jackson,et al.  General mass action kinetics , 1972 .

[9]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[10]  R. Firoozian Feedback Control Theory , 2009 .

[11]  J. Demongeot,et al.  Positive and negative feedback: striking a balance between necessary antagonists. , 2002, Journal of theoretical biology.

[12]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[13]  David Angeli,et al.  Multi-stability in monotone input/output systems , 2003, Syst. Control. Lett..

[14]  Sorin Istrail,et al.  Statistical mechanics, three-dimensionality and NP-completeness: I. Universality of intracatability for the partition function of the Ising model across non-planar surfaces (extended abstract) , 2000, STOC '00.

[15]  J. Lisman A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E. Gilbert Lattice Theoretic Properties of Frontal Switching Functions , 1954 .

[17]  El Houssine Snoussi Necessary Conditions for Multistationarity and Stable Periodicity , 1998 .

[18]  M. Husain,et al.  A model for the control of testosterone secretion. , 1986, Journal of theoretical biology.

[19]  Eduardo Sontag,et al.  Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 , 2003, Nature Cell Biology.

[20]  M Laurent,et al.  Multistability: a major means of differentiation and evolution in biological systems. , 1999, Trends in biochemical sciences.

[21]  Hunter S. Snevily Combinatorics of finite sets , 1991 .

[22]  Michael Malisoff,et al.  A small-gain theorem for motone systems with multivalued input-state characteristics , 2005, IEEE Transactions on Automatic Control.

[23]  D. Lauffenburger,et al.  A Computational Study of Feedback Effects on Signal Dynamics in a Mitogen‐Activated Protein Kinase (MAPK) Pathway Model , 2001, Biotechnology progress.

[24]  Hal L. Smith,et al.  Convergent and oscillatory activation dynamics for cascades of neural nets with nearest neighbor competitive or cooperative interactions , 1991, Neural Networks.

[25]  Eduardo Sontag,et al.  Global attractivity, I/O monotone small-gain theorems, and biological delay systems , 2005 .

[26]  John J. Tyson,et al.  The Dynamics of Feedback Control Circuits in Biochemical Pathways , 1978 .

[27]  E. D. Sontagc,et al.  Nonmonotone systems decomposable into monotone systems with negative feedback , 2005 .

[28]  L Wolpert,et al.  Thresholds in development. , 1977, Journal of theoretical biology.

[29]  W. Walter Differential and Integral Inequalities , 1970 .

[30]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Othmer The qualitative dynamics of a class of biochemical control circuits , 1976, Journal of mathematical biology.

[32]  P. Polácik,et al.  Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems , 1992 .

[33]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: Ii. the Species-reactions Graph , 2022 .

[34]  R. Thomas,et al.  Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. , 2001, Chaos.

[35]  Eduardo D. Sontag,et al.  Monotone systems under positive feedback: multistability and a reduction theorem , 2005, Syst. Control. Lett..

[36]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[37]  Michael L. Mavrovouniotis,et al.  Petri Net Representations in Metabolic Pathways , 1993, ISMB.

[38]  Eduardo D Sontag,et al.  On the stability of a model of testosterone dynamics , 2004, Journal of mathematical biology.

[39]  S. Smale On the differential equations of species in competition , 1976, Journal of mathematical biology.

[40]  P. E. Rapp,et al.  A theoretical investigation of a large class of biochemical oscillators , 1975 .

[41]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: I. the Injectivity Property * , 2006 .

[42]  E. Camouzis,et al.  Dynamics of Second Order Rational Difference Equations: With Open Problems and Conjectures , 2001 .

[43]  Prahlad T. Ram,et al.  MAP Kinase Phosphatase As a Locus of Flexibility in a Mitogen-Activated Protein Kinase Signaling Network , 2002, Science.

[44]  J. Mallet-Paret,et al.  The Poincare-Bendixson theorem for monotone cyclic feedback systems , 1990 .

[45]  P. Haccou Mathematical Models of Biology , 2022 .

[46]  Eduardo Sontag,et al.  A Petri net approach to the study of persistence in chemical reaction networks. , 2006, Mathematical biosciences.

[47]  F. Clarke,et al.  Nonlinear Analysis, Differential Equations and Control , 1999 .

[48]  Jean-Luc Gouzé,et al.  A criterion of global convergence to equilibrium for differential systems. Application to Lotka-Volterra systems , 1988 .

[49]  J. Monod,et al.  Teleonomic mechanisms in cellular metabolism, growth, and differentiation. , 1961, Cold Spring Harbor symposia on quantitative biology.

[50]  B. L. Clarke Stability of Complex Reaction Networks , 2007 .

[51]  J E Ferrell,et al.  The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. , 1998, Science.

[52]  Eduardo Sontag,et al.  Steady-states of receptor-ligand dynamics: a theoretical framework. , 2004, Journal of theoretical biology.

[53]  Horst R. Thieme,et al.  Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations , 1992 .

[54]  J. Hale Asymptotic Behavior of Dissipative Systems , 1988 .

[55]  P. Volkmann Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen , 1972 .

[56]  B. Séraphin,et al.  Positive feedback in eukaryotic gene networks: cell differentiation by graded to binary response conversion , 2001, The EMBO journal.

[57]  P. Polácik,et al.  Exponential separation and invariant bundles for maps in ordered Banach spaces with applications to parabolic equations , 1993 .

[58]  Eduardo D. Sontag,et al.  Almost Global Convergence in Singular Perturbations of Strongly Monotone Systems , 2006 .

[59]  Morris W. Hirsch,et al.  Convergent activation dynamics in continuous time networks , 1989, Neural Networks.

[60]  James E. Ferrell,et al.  Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. , 2001, Chaos.

[61]  J. Gouzé Positive and Negative Circuits in Dynamical Systems , 1998 .

[62]  Eduardo Sontag Stability and stabilization: discontinuities and the effect of disturbances , 1999, math/9902026.

[63]  Hassan K. Khalil,et al.  Nonlinear Systems Third Edition , 2008 .

[64]  A. Goldbeter,et al.  Biochemical Oscillations And Cellular Rhythms: Contents , 1996 .

[65]  J. E. Kranz,et al.  YPD, PombePD and WormPD: model organism volumes of the BioKnowledge library, an integrated resource for protein information. , 2001, Nucleic acids research.

[66]  S. Mangan,et al.  The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks. , 2003, Journal of molecular biology.

[67]  David Angeli,et al.  Monotone control systems , 2003, IEEE Trans. Autom. Control..

[68]  John J. Tyson,et al.  Existence of periodic solutions for negative feedback cellular control systems , 1977 .

[69]  Stefan Schuster,et al.  Topological analysis of metabolic networks based on Petri net theory , 2003, Silico Biol..

[70]  James P. Keener,et al.  Mathematical physiology , 1998 .

[71]  Garry Howell,et al.  An Introduction to Chaotic dynamical systems. 2nd Edition, by Robert L. Devaney , 1990 .

[72]  Stephen Smale,et al.  THE DYNAMICAL SYSTEMS APPROACH TO DIFFERENTIAL EQUATIONS , 2007 .

[73]  James E. Ferrell,et al.  The JNK Cascade as a Biochemical Switch in Mammalian Cells Ultrasensitive and All-or-None Responses , 2003, Current Biology.

[74]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[75]  Eduardo D. Sontag,et al.  Algorithmic and Complexity Results for Decompositions of Biological Networks into Monotone Subsystems , 2005, WEA.

[76]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[77]  M. Feinberg Some Recent Results in Chemical Reaction Network Theory , 1991 .

[78]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[79]  Peter Hess,et al.  Boundedness of prime periods of stable cycles and convergence to fixed points in discrete monotone dynamical systems , 1993 .

[80]  R. Thomas,et al.  Multistationarity, the basis of cell differentiation and memory. I. Structural conditions of multistationarity and other nontrivial behavior. , 2001, Chaos.

[81]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[82]  M. Feinberg The existence and uniqueness of steady states for a class of chemical reaction networks , 1995 .

[83]  G. Rinaldi,et al.  Exact ground states of Ising spin glasses: New experimental results with a branch-and-cut algorithm , 1995 .

[84]  Denis Thieffry,et al.  A description of dynamical graphs associated to elementary regulatory circuits , 2003, ECCB.

[85]  David Angeli,et al.  On predator-prey systems and small-gain theorems. , 2004, Mathematical biosciences and engineering : MBE.

[86]  Michael Malisoff,et al.  Optimal Control, Stabilization and Nonsmooth Analysis , 2004 .

[87]  K. P. Hadeler,et al.  Quasimonotone systems and convergence to equilibrium in a population genetic model , 1983 .

[88]  Jiang Jifa,et al.  On the Global Stability of Cooperative Systems , 1994 .

[89]  J. Ferrell,et al.  Bistability in the JNK cascade , 2001, Current Biology.

[90]  Marek S. Skrzypek,et al.  YPDTM, PombePDTM and WormPDTM: model organism volumes of the BioKnowledgeTM Library, an integrated resource for protein information , 2001, Nucleic Acids Res..

[91]  Tomáš Gedeon,et al.  Cyclic Feedback Systems , 1998 .

[92]  F. Cross,et al.  Testing a mathematical model of the yeast cell cycle. , 2002, Molecular biology of the cell.

[93]  Madalena Chaves,et al.  Robustness and fragility of Boolean models for genetic regulatory networks. , 2005, Journal of theoretical biology.

[94]  J. Smillie Competitive and Cooperative Tridiagonal Systems of Differential Equations , 1984 .

[95]  David Angeli,et al.  A small-gain theorem for almost global convergence of monotone systems , 2004, Syst. Control. Lett..

[96]  Liming Wang,et al.  A Remark on Singular Perturbations of Strongly Monotone Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[97]  David Angeli,et al.  Interconnections of Monotone Systems with Steady-State Characteristics , 2004 .

[98]  Mathukumalli Vidyasagar,et al.  Cross-Positive Matrices , 1970 .

[99]  Eduardo Sontag,et al.  A Remark on Multistability for Monotone Systems II , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[100]  B. Kholodenko,et al.  Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. , 2000, European journal of biochemistry.

[101]  Hal L. Smith,et al.  Oscillations and multiple steady states in a cyclic gene model with repression , 1987, Journal of mathematical biology.

[102]  E. N. Dancer Some remarks on a boundedness assumption for monotone dynamical systems , 1998 .

[103]  Chi-Ying F. Huang,et al.  Ultrasensitivity in the mitogen-activated protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[104]  C. Widmann,et al.  Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. , 1999, Physiological reviews.

[105]  J. Ferrell Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. , 1996, Trends in biochemical sciences.

[106]  M. Ptashne A genetic switch : phage λ and higher organisms , 1992 .

[107]  M. Feinberg,et al.  Dynamics of open chemical systems and the algebraic structure of the underlying reaction network , 1974 .

[108]  John J. Tyson,et al.  Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[109]  David Angeli,et al.  On the structural monotonicity of chemical reaction networks , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[110]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[111]  M. Bernhard Introduction to Chaotic Dynamical Systems , 1992 .

[112]  A. Novick,et al.  ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[113]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[114]  E.D. Sontag,et al.  An analysis of a circadian model using the small-gain approach to monotone systems , 2003, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[115]  Hal L. Smith,et al.  Monotone Dynamical Systems: An Introduction To The Theory Of Competitive And Cooperative Systems (Mathematical Surveys And Monographs) By Hal L. Smith , 1995 .

[116]  E D Sontag,et al.  Some new directions in control theory inspired by systems biology. , 2004, Systems biology.

[117]  Eric Goles Ch.,et al.  On limit cycles of monotone functions with symmetric connection graph , 2004, Theor. Comput. Sci..

[118]  M. Feinberg Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems , 1987 .

[119]  Lee A. Segel,et al.  Modeling Dynamic Phenomena in Molecular and Cellular Biology , 1984 .

[120]  L. Glass,et al.  The logical analysis of continuous, non-linear biochemical control networks. , 1973, Journal of theoretical biology.

[121]  D. J. Allwright,et al.  A global stability criterion for simple control loops , 1977 .

[122]  David Angeli,et al.  Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles ☆ , 2008 .

[123]  Eduardo D. Sontag,et al.  Molecular Systems Biology and Control , 2005, Eur. J. Control.

[124]  S. Walcher On Cooperative Systems with Respect to Arbitrary Orderings , 2001 .

[125]  M. Hirsch Systems of Differential Equations that are Competitive or Cooperative II: Convergence Almost Everywhere , 1985 .

[126]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[127]  J. Mahaffy,et al.  Stability analysis for a mathematical model of the lac operon , 1999 .

[128]  Eduardo Sontag,et al.  Monotone Chemical Reaction Networks , 2007 .

[129]  René Thomas On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations , 1981 .