Acetic Acid Catalyzed Carbon Aerogels

We prepared carbon aerogels with a wide range of structural properties and densities using the weak acetic acid as a catalyst. Two series of acetic acid catalyzed carbon aerogels with different dilution of the catalyst and the monomers were investigated accurately. Structural investigation was performed via (U)SAXS, gas sorption and SEM. The pore and particle size can be tailored according to the used amount of monomers and catalyst, respectively. The connectivity of the primary particles turned out to be exceptionally high, as was found from SEM photographs and is reflected in a large elastic modulus and a high electrical conductivity. IR transmission spectra of the acetic acid catalyzed resorcinol-formaldehyde aerogels indicate the existence of a carbonyl group within the aerogel network, which may be important for the structural development of the this gel. As no metal containing catalyst was employed, the resulting carbon aerogels are extremely pure.

[1]  J. Fricke,et al.  Carbon Cloth Reinforced Carbon Aerogel Films Derived from Resorcinol Formaldehyde , 2001 .

[2]  Jürgen Blumm,et al.  Thermal properties of carbon aerogels , 1995 .

[3]  R. Pekala,et al.  New organic aerogels based upon a phenolic-furfural reaction☆ , 1995 .

[4]  G. Fournet,et al.  Small‐Angle Scattering of X‐Rays , 1956 .

[5]  J. Gross,et al.  Ultrasonic velocity measurements in silica, carbon and organic aerogels , 1992 .

[6]  J. Fricke,et al.  Characterization of SiO2, RF and carbon aerogels by dynamic gas expansion , 1995 .

[7]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[8]  J. Fricke,et al.  High surface area carbon aerogels for supercapacitors , 1998 .

[9]  J. Fricke,et al.  Button cell supercapacitors with monolithic carbon aerogels , 2002 .

[10]  J. Danielli,et al.  Progress in surface and membrane science , 1971 .

[11]  R. Pekala,et al.  Microporosity in carbon aerogels , 1998 .

[12]  J. Fricke,et al.  Small angle scattering and the structure of aerogels , 1992 .

[13]  J. Fricke,et al.  Structure of carbon aerogels near the gelation limit of the resorcinol–formaldehyde precursor , 1998 .

[14]  A. F. Holleman,et al.  Lehrbuch der anorganischen Chemie , 2010, Nature.

[15]  R. Pekala,et al.  Organic aerogels: microstructural dependence of mechanical properties in compression , 1990 .

[16]  R. Pekala,et al.  Electrochemical behavior of carbon aerogels derived from different precursors , 1995 .

[17]  J. Fricke,et al.  Influence of monomer and catalyst concentration on RF and carbon aerogel structure , 1998 .

[18]  Wen‐Cui Li,et al.  Characterization of the microstructures of organic and carbon aerogels based upon mixed cresol–formaldehyde , 2001 .

[19]  A. V. Rao,et al.  Small-angle X-ray scattering of a new series of organic aerogels , 2001 .

[20]  Andre Knop,et al.  Chemistry and Application of Phenolic Resins , 1984 .

[21]  R. Caps,et al.  Correlation between structure and thermal conductivity of organic aerogels , 1995 .

[22]  O. Glatter,et al.  19 – Small-Angle X-ray Scattering , 1973 .

[23]  J. Fricke,et al.  Structural Investigation of Resorcinol Formaldehyde and Carbon Aerogels Using SAXS and BET , 1997 .

[24]  M. Dubinin,et al.  Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents , 1980 .

[25]  H. Mehling,et al.  In situ infrared observation of the pyrolysis process of carbon aerogels , 1998 .

[26]  J. Fricke,et al.  Carbon aerogels from dilute catalysis of resorcinol with formaldehyde , 1997 .

[27]  J. Boer,et al.  Thet-curve of multimolecular N2-adsorption , 1966 .

[28]  J. L. Kaschmitter,et al.  The Aerocapacitor: An Electrochemical Double‐Layer Energy‐Storage Device , 1993 .

[29]  S. R. Meier,et al.  Carbon aerogels as broadband non-reflective materials , 2001 .

[30]  J. Fricke,et al.  Skin formation on RF aerogel sheets , 2001 .