Measure-Resend Semi-Quantum Private Comparison Without Entanglement

In this paper, we successfully design the semi-quantum private comparison (SQPC) protocol with the measure-resend characteristic by using two-particle product states as the initial prepared quantum resource which allows two classical users to compare the equality of their private secrets under the help of a quantum third party (TP). The quantum TP is semi-honest in the sense that he is allowed to misbehave on his own but cannot conspire with either of users. Both the output correctness and the security against the outside attack and the participant attack can be guaranteed. Compared with the previous SQPC protocols, the advantage of our protocol lies in that it only employs two-particle product states as the initial prepared quantum resource, only requires TP to perform single-photon measurements and does not need quantum entanglement swapping. Our protocol can be realized with current quantum technologies.

[1]  Fei Gao,et al.  Efficient quantum private comparison employing single photons and collective detection , 2013, Quantum Inf. Process..

[2]  Zhaoxu Ji,et al.  Quantum Private Comparison of Equal Information Based on Highly Entangled Six-Qubit Genuine State , 2016 .

[3]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[4]  Jun Gu,et al.  Semi-quantum private comparison protocol under an almost-dishonest third party , 2016 .

[5]  Daowen Qiu,et al.  Quantum secret sharing with classical Bobs , 2013 .

[6]  Walter O. Krawec Mediated semiquantum key distribution , 2014, 1411.6024.

[7]  Wei Cui,et al.  Quantum Private Comparison Protocol Based on Bell Entangled States , 2012 .

[8]  Hua Zhang,et al.  Comment on quantum private comparison protocols with a semi-honest third party , 2012, Quantum Information Processing.

[9]  Yixian Yang,et al.  An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement , 2010 .

[10]  Qiaoyan Wen,et al.  An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement , 2009 .

[11]  Quan Zhang,et al.  Semiquantum Key Distribution Using Entangled States , 2011, 1104.1267.

[12]  Walter O. Krawec Security of a semi-quantum protocol where reflections contribute to the secret key , 2015, Quantum Inf. Process..

[13]  Chitra Shukla,et al.  Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue , 2017, Quantum Inf. Process..

[14]  Wei Jiang,et al.  High-Capacity Quantum Secure Direct Communication with Single Photons in Both Polarization and Spatial-Mode Degrees of Freedom , 2012 .

[15]  Qiao-Yan Wen,et al.  Secure quantum private comparison , 2009 .

[16]  Hao Liang,et al.  Eavesdropping in a quantum secret sharing protocol based on Grover algorithm and its solution , 2010 .

[17]  Wei Chen,et al.  Delayed error verification in quantum key distribution , 2014 .

[18]  Wei Zhang,et al.  Single-state semi-quantum key distribution protocol and its security proof , 2016, International Journal of Quantum Information.

[19]  Qing-yu Cai,et al.  Comment on "Quantum key distribution with classical Bob". , 2009, Physical review letters.

[20]  Daowen Qiu,et al.  Three-step semiquantum secure direct communication protocol , 2014, Science China Physics, Mechanics & Astronomy.

[21]  P. Petroff,et al.  A quantum dot single-photon turnstile device. , 2000, Science.

[22]  Zhiwei Sun,et al.  QUANTUM KEY DISTRIBUTION WITH LIMITED CLASSICAL BOB , 2011, 1106.4615.

[23]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[24]  Daowen Qiu,et al.  Semiquantum-key distribution using less than four quantum states , 2009 .

[25]  Chuan Wang,et al.  Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration , 2011 .

[26]  Chun-Wei Yang,et al.  Quantum private comparison of equality protocol without a third party , 2014, Quantum Inf. Process..

[27]  Qiaoyan Wen,et al.  Quantum Private Comparison Protocol with the Random Rotation , 2013 .

[28]  Wei-Wei Zhang,et al.  Cryptanalysis and improvement of the quantum private comparison protocol with semi-honest third party , 2013, Quantum Inf. Process..

[29]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[30]  Tan Yong-Gang,et al.  Quantum key distribution series network protocol with M-classical Bobs , 2009 .

[31]  Wen Liu,et al.  New Quantum Private Comparison Protocol Using χ-Type State , 2012 .

[32]  L. Frunzio,et al.  Niobium Superconducting Nanowire Single-Photon Detectors , 2009, IEEE Transactions on Applied Superconductivity.

[33]  Bo Zhang,et al.  Cryptanalysis and improvement of quantum private comparison of equality protocol without a third party , 2015, Quantum Inf. Process..

[34]  Zhiwei Sun,et al.  Quantum Private Comparison Protocol Based on Cluster States , 2013 .

[35]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[36]  Wen Liu,et al.  Quantum Private Comparison Based on GHZ Entangled States , 2012 .

[37]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[38]  Yu-Guang Yang,et al.  Comment on “efficient and feasible quantum private comparison of equality against the collective amplitude damping noise” , 2014, Quantum Inf. Process..

[39]  Qin Li,et al.  Semiquantum secret sharing using entangled states , 2009, 0906.1866.

[40]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[41]  Walter O. Krawec Security proof of a semi-quantum key distribution protocol , 2014, 2015 IEEE International Symposium on Information Theory (ISIT).

[42]  Chun-Wei Yang,et al.  EFFICIENT KEY CONSTRUCTION ON SEMI-QUANTUM SECRET SHARING PROTOCOLS , 2013 .

[43]  Xiangfu Zou,et al.  Reply to ``Comment on `Semiquantum-key distribution using less than four quantum states' '' , 2010, 1010.4233.

[44]  Tal Mor,et al.  Comment on "Semiquantum-key distribution using less than four quantum states" , 2010, 1010.2221.

[45]  Fei Gao,et al.  A simple participant attack on the brádler-dušek protocol , 2007, Quantum Inf. Comput..

[46]  Wen Liu,et al.  A Protocol for the Quantum Private Comparison of Equality with χ-Type State , 2012 .

[47]  Daowen Qiu,et al.  A Novel Semi-Quantum Secret Sharing Scheme of Specific Bits , 2015, International Journal of Theoretical Physics.

[48]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[49]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[50]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[51]  Wen Liu,et al.  Multi-party Quantum Private Comparison Protocol Using d-Dimensional Basis States Without Entanglement Swapping , 2014 .

[52]  Wei Huang,et al.  Multi-party quantum private comparison protocol with $$n$$n-level entangled states , 2014, Quantum Inf. Process..

[53]  Jian Li,et al.  An Efficient Protocol for the Private Comparison of Equal Information Based on Four-Particle Entangled W State and Bell Entangled States Swapping , 2014 .

[54]  Hua Lu,et al.  QUANTUM KEY DISTRIBUTION WITH CLASSICAL ALICE , 2008 .

[55]  Tal Mor,et al.  Quantum Key Distribution with Classical Bob , 2007, 2007 First International Conference on Quantum, Nano, and Micro Technologies (ICQNM'07).

[56]  Dan Li,et al.  Quantum Private Comparison Protocol with W States , 2014 .

[57]  Gang Xu,et al.  CONTROLLED QUANTUM SECURE DIRECT COMMUNICATION WITH W STATE , 2008 .

[58]  Ran Gelles,et al.  Semi-Quantum Key Distribution , 2008, ArXiv.

[59]  A Cabello Quantum key distribution in the Holevo limit. , 2000, Physical review letters.

[60]  Yuguang Yang,et al.  NEW QUANTUM PRIVATE COMPARISON PROTOCOL WITHOUT ENTANGLEMENT , 2012 .

[61]  Hoi-Kwong Lo,et al.  Insecurity of Quantum Secure Computations , 1996, ArXiv.

[62]  Tzonelih Hwang,et al.  Intercept–resend attacks on Chen et al.'s quantum private comparison protocol and the improvements , 2011 .

[63]  Quan Zhang,et al.  SEMIQUANTUM SECRET SHARING USING TWO-PARTICLE ENTANGLED STATE , 2011 .

[64]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[65]  Zhaoxu Ji,et al.  Two-Party Quantum Private Comparison with Five-Qubit Entangled States , 2017 .

[66]  Yan Chang,et al.  Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad , 2014 .

[67]  Shengyu Zhang,et al.  Semiquantum key distribution without invoking the classical party’s measurement capability , 2015, Quantum Information Processing.

[68]  Gang Xu,et al.  CRYPTANALYSIS AND IMPROVEMENTS FOR THE QUANTUM PRIVATE COMPARISON PROTOCOL USING EPR PAIRS , 2013 .

[69]  Wen Liu,et al.  An efficient protocol for the quantum private comparison of equality with W state , 2011 .

[70]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[71]  Lixing You,et al.  Single photon response of superconducting nanowire single photon detector , 2010 .

[72]  Anirban Pathak,et al.  Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment , 2016, International Journal of Quantum Information.

[73]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[74]  Walter O. Krawec Restricted attacks on semi-quantum key distribution protocols , 2014, Quantum Inf. Process..

[75]  Tzonelih Hwang,et al.  New quantum private comparison protocol using EPR pairs , 2011, Quantum Information Processing.

[76]  Xiu-Bo Chen,et al.  AN EFFICIENT PROTOCOL FOR THE QUANTUM PRIVATE COMPARISON OF EQUALITY WITH A FOUR-QUBIT CLUSTER STATE , 2012 .

[77]  Tian-Yu Ye,et al.  Quantum Private Comparison via Cavity QED , 2017, 2205.04011.

[78]  Ping Zhou,et al.  Robustness of two-way quantum communication protocols against Trojan horse attack , 2005 .

[79]  Gongde Guo,et al.  Quantum Private Comparison of Equality with χ-Type Entangled States , 2013 .

[80]  Tal Mor,et al.  A New and Feasible Protocol for Semi-quantum Key Distribution , 2017, ArXiv.

[81]  Chia-Wei Tsai,et al.  Multi-user private comparison protocol using GHZ class states , 2013, Quantum Inf. Process..

[82]  M. Koashi,et al.  Quantum entanglement for secret sharing and secret splitting , 1999 .

[83]  Wenjie Liu,et al.  Multi-party Semi-quantum Key Agreement with Delegating Quantum Computation , 2017 .

[84]  Gu Bin,et al.  A two-step quantum secure direct communication protocol with hyperentanglement , 2011 .

[85]  Wei Zhang,et al.  Security of a single-state semi-quantum key distribution protocol , 2016, Quantum Inf. Process..

[86]  Tian-Yu Ye,et al.  Semi-quantum Dialogue Based on Single Photons , 2018, 2205.05568.

[87]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[88]  M. Orrit,et al.  Triggered Source of Single Photons based on Controlled Single Molecule Fluorescence , 1999 .