Multi-sensor data fusion for supervised land-cover classification using Bayesian and geostatistical techniques

We propose a geostatistical approach incorporated to the Bayesian data fusion technique for supervised classification of multi-sensor remote sensing data. The classification based only on the traditional spectral approach cannot preserve the accurate spatial information and can result in unrealistic classification results. To obtain accurate spatial/contextual information, the indicator kriging that allows one to estimate the probability of occurrence of certain classes on the basis of surrounding pixel information is incorporated into the Bayesian framework. This new approach has its merit incorporating both the spectral information and spatial information and improves the confidence level in the final data fusion task. To illustrate the proposed scheme, supervised classification of multi-sensor test remote sensing data was carried out. Analysis of the results indicates that the proposed method considerably improves the classification accuracy, compared to the methods based on the spectral information alone.

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[3]  Peijun Li,et al.  Lithological discrimination of Altun area in northwest China using Landsat TM data and geostatistical textural information , 2001 .

[4]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[5]  Eric R. Ziegel,et al.  Geostatistics for the Next Century , 1994 .

[6]  Michael Edward Hohn,et al.  An Introduction to Applied Geostatistics: by Edward H. Isaaks and R. Mohan Srivastava, 1989, Oxford University Press, New York, 561 p., ISBN 0-19-505012-6, ISBN 0-19-505013-4 (paperback), $55.00 cloth, $35.00 paper (US) , 1991 .

[7]  Tong Lee,et al.  Probabilistic and Evidential Approaches for Multisource Data Analysis , 1987, IEEE Transactions on Geoscience and Remote Sensing.

[8]  W. Moon On Mathematical Representation and Integration of Multiple Spatial Geoscience Data Sets , 1993 .

[9]  C. Chung,et al.  Probabilistic prediction models for landslide hazard mapping , 1999 .

[10]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[11]  Wooil M. Moon,et al.  Integration and fusion of geological exploration data: a theoretical review of fuzzy logic approach , 1998 .

[12]  Wooil M. Moon,et al.  Integration Of Geophysical And Geological Data Using Evidential Belief Function , 1990 .

[13]  Lorenzo Bruzzone,et al.  Combination of neural and statistical algorithms for supervised classification of remote-sensing image , 2000, Pattern Recognit. Lett..

[14]  Sebastien Strebelle,et al.  Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics , 2002 .

[15]  Paul M. Mather,et al.  Classification of multisource remote sensing imagery using a genetic algorithm and Markov random fields , 1999, IEEE Trans. Geosci. Remote. Sens..

[16]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[17]  Pierre Goovaerts,et al.  Geostatistical incorporation of spatial coordinates into supervised classification of hyperspectral data , 2002, J. Geogr. Syst..

[18]  Lorenzo Bruzzone,et al.  An experimental comparison of neural and statistical non-parametric algorithms for supervised classification of remote-sensing images , 1996, Pattern Recognit. Lett..

[19]  Wooil M. Moon,et al.  Fuzzy logic fusion of W-Mo exploration data from Seobyeog-ri, Korea , 2000 .

[20]  Lucien Wald,et al.  Some terms of reference in data fusion , 1999, IEEE Trans. Geosci. Remote. Sens..

[21]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[22]  Bassel Solaiman,et al.  Multisensor data fusion using fuzzy concepts: application to land-cover classification using ERS-1/JERS-1 SAR composites , 1999, IEEE Trans. Geosci. Remote. Sens..

[23]  D. Posa Conditioning of the stationary kriging matrices for some well-known covariance models , 1989 .

[24]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[25]  P. Goovaerts,et al.  Comparison of coIK, IK and mIK Performances for Modeling Conditional Probabilities of Categorical Variables , 1994 .