Precise comparisons of bottom‐pressure and altimetric ocean tides

[1] A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets: the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free core-nutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

[1]  Andrew D. Greene,et al.  Mapping Circulation in the Kuroshio Extension with an Array of Current and Pressure Recording Inverted Echo Sounders , 2010 .

[2]  Gary D. Egbert,et al.  Estimates of M2 Tidal Energy Dissipation from TOPEX/Poseidon Altimeter Data , 2001 .

[3]  K. Lambeck,et al.  Glacial rebound and relative sea-level variations: a new appraisal , 1987 .

[4]  W. Munk,et al.  Tidal spectroscopy and prediction , 1966, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  Paul D. Bates SWOT: The Surface Water and Ocean Topography Mission: Wide-Swath Altimetric Measurement of Water Elevation on Earth , 2012 .

[6]  H. S. Hopfield Tropospheric Effect on Electromagnetically Measured Range: Prediction from Surface Weather Data , 1971 .

[7]  John M. Wahr,et al.  Body tides on an elliptical, rotating, elastic and oceanless earth , 1981 .

[8]  Benjamin F. Chao,et al.  Analysis of tidal signals in surface displacement measured by a dense continuous GPS array , 2012 .

[9]  B. Haurwitz,et al.  The lunar barometric tide, its global distribution and annual variation , 1969 .

[10]  S. Pagiatakis The response of a realistic earth to ocean tide loading , 1990 .

[11]  Bin Wu,et al.  Determination of Love Numbers Using Satellite Laser Ranging , 2001 .

[12]  L. Fu,et al.  Three forms of variability in Argentine Basin ocean bottom pressure , 2007 .

[13]  Richard D. Ray,et al.  Bottom pressure tides along a line in the southeast Atlantic Ocean and comparisons with satellite altimetry , 2010 .

[14]  D. E. Cartwright,et al.  Corrected Tables of Tidal Harmonics , 1973 .

[15]  Ernst J. O. Schrama,et al.  A preliminary tidal analysis of TOPEX/POSEIDON altimetry , 1994 .

[16]  Harald Schuh,et al.  Tidal Love and Shida numbers estimated by geodetic VLBI , 2013, Journal of geodynamics.

[17]  B. Haurwitz,et al.  The diurnal and semidiurnal barometric oscillations global distribution and annual variation , 1973 .

[18]  T. Kanzow Monitoring the integrated deep meridional flow in the tropical North Atlantic , 2006 .

[19]  M. Jagoda,et al.  Estimation of the elastic Earth parameters (h2, l2) using SLR data , 2010 .

[20]  J. Wahr,et al.  Tides for a convective Earth , 1999 .

[21]  Gary D. Egbert,et al.  Tide Predictions in Shelf and Coastal Waters: Status and Prospects , 2011 .

[22]  R. Haas,et al.  Determination of tidal parameters from VLBI , 1997 .

[23]  M. E. Parke,et al.  Accuracy assessment of recent ocean tide models , 1997 .

[24]  P. M. Mathews,et al.  Determination of tidal h Love number parameters in the diurnal band using an extensive VLBI data set , 1994 .

[25]  R. S. Nerem,et al.  Comparison of Global Mean Sea Level Time Series from TOPEX/Poseidon, Jason-1, and Jason-2 , 2012 .

[26]  W. Farrell Deformation of the Earth by surface loads , 1972 .

[27]  O. Francis,et al.  Modelling the global ocean tides: modern insights from FES2004 , 2006 .

[28]  J. Wahr,et al.  A diurnal resonance in the ocean tide and in the Earth's load response due to the resonant free ‘core nutation’ , 1981 .

[30]  L. Jia,et al.  Load Love numbers and Green's functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0 , 2012, Comput. Geosci..

[31]  F. Snodgrass Deep sea instrument capsule. , 1968, Science.

[32]  Richard D. Ray,et al.  Energetics of global ocean tides from Geosat altimetry , 1991 .

[33]  J. M. Vassie,et al.  The Acclaim Programme in the South Atlantic and Southern Oceans , 1993 .

[34]  Thomas A. Herring,et al.  Geodesy by radio interferometry: Studies of the forced nutations of the Earth. II: Interpretation , 1986 .

[35]  Pascal Willis,et al.  Towards development of a consistent orbit series for TOPEX, Jason-1, and Jason-2 , 2010 .

[36]  H. Schuh,et al.  Determination of frequency dependent Love and Shida numbers from VLBI data , 1996 .

[37]  Takeo Ito,et al.  High resolution mapping of Earth tide response based on GPS data in Japan , 2009 .

[38]  J. Toole,et al.  Coherence of Western Boundary Pressure at the RAPID WAVE Array: Boundary Wave Adjustments or Deep Western Boundary Current Advection? , 2013 .

[39]  W. Munk,et al.  Pelagic tidal measurements: A suggested procedure for analysis , 1969 .

[40]  The evolution of deep ocean pressure measurements in the UK , 1997 .

[41]  A. Miller,et al.  The Fortnightly and Monthly Tides: Resonant Rossby Waves or Nearly Equilibrium Gravity Waves? , 1993 .

[42]  J. Marotzke,et al.  Monitoring the Atlantic meridional overturning circulation , 2011 .

[43]  P. Douillet Tidal dynamics of the south-west lagoon of New Caledonia: observations and 2D numerical modelling , 1998 .

[44]  Srinivas Bettadpur,et al.  Geometrical determination of the Love Number h2 at four tidal frequencies , 1995 .

[45]  P. M. Mathews,et al.  Tidal station displacements , 1997 .

[46]  O. Colombo Altimetry, Orbits and Tides , 1984 .

[47]  Richard D. Ray,et al.  Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides , 2002 .

[48]  P. Worcester,et al.  On the predictability of mode-1 internal tides , 2011 .

[49]  S. Bettadpur,et al.  Geographical representation of radial orbit perturbations due to ocean tides: Implications for satellite altimetry , 1994 .

[50]  R. Ray Propagation of the overtide M4 through the deep Atlantic Ocean , 2007 .

[51]  T. Herring,et al.  Measurement of diurnal and semidiurnal rotational variations and tidal parameters of Earth , 1994 .

[52]  R. Ray,et al.  Barometric Tides from ECMWF Operational Analyses , 2003 .

[53]  G. Farrow,et al.  Tidal studies on Aldabra , 1971 .

[54]  D. Cartwright A subharmonic lunar tide in the seas off Western Europe , 1975, Nature.

[55]  Olaf Boebel,et al.  Validation of GRACE Gravity Fields by In-Situ Data of Ocean Bottom Pressure , 2010 .

[56]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[57]  S. Chapman,et al.  The Determination of Lunar Daily Geophysical Variations by the Chapman-Miller Method , 1970 .

[58]  R. Ray Comparisons of global analyses and station observations of the S2 barometric tide , 2001 .