Frequency Locking by External Forcing in Systems with Rotational Symmetry

We study locking of the modulation frequency of a relative periodic orbit in a general $S^1$-equivariant system of ordinary differential equations under an external forcing of modulated wave type. Our main result describes the shape of the locking region in the three-dimensional space of the forcing parameters: intensity, wave frequency, and modulation frequency. The difference of the wave frequencies of the relative periodic orbit and the forcing is assumed to be large and differences of modulation frequencies to be small. The intensity of the forcing is small in the generic case and can be large in the degenerate case, when the first order averaging vanishes. Applications are external electrical and/or optical forcing of selfpulsating states of lasers.

[1]  Lutz Recke,et al.  Forced frequency locking of rotating waves , 1998 .

[2]  Yingfei Yi,et al.  Stability of Integral Manifold and Orbital Attraction of Quasi-periodic Motion , 1993 .

[3]  André Vanderbauwhede,et al.  Centre Manifolds, Normal Forms and Elementary Bifurcations , 1989 .

[4]  Mindaugas Radziunas,et al.  Well‐posedness, smooth dependence and centre manifold reduction for a semilinear hyperbolic system from laser dynamics , 2007 .

[5]  A Gavrielides,et al.  Stability and bifurcations of periodically modulated, optically injected laser diodes. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Martin Golubitsky,et al.  Modulated rotating waves in O(2) mode interactions , 1988 .

[7]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[8]  David A. Rand,et al.  Dynamics and symmetry. Predictions for modulated waves in rotating fluids , 1982 .

[9]  Klaus R. Schneider Entrainment of Modulation Frequency: a Case Study , 2005, Int. J. Bifurc. Chaos.

[10]  Daan Lenstra,et al.  The dynamical complexity of optically injected semiconductor lasers , 2005 .

[11]  A. Ehrhardt,et al.  18 GHz all-optical frequency locking and clock recovery using a self-pulsating two-section DFB-laser , 1994, IEEE Photonics Technology Letters.

[12]  Carsten Bornholdt,et al.  All-optical clock recovery module based on self-pulsating DFB laser , 1998 .

[13]  D. R. J. Chillingworth,et al.  Generic multiparameter bifurcation from a manifold , 2000 .

[14]  B. Krauskopf,et al.  Self-pulsations of lasers with saturable absorber: dynamics and bifurcations , 1999 .

[15]  Björn Sandstede,et al.  Frequency regions for forced locking of self-pulsating multi-section DFB lasers , 1998 .

[16]  Lutz Recke,et al.  Conditions for Synchronization of One Oscillation System , 2005 .

[17]  Mindaugas Radziunas,et al.  Numerical bifurcation analysis of traveling wave model of multisection semiconductor lasers , 2006 .

[18]  Lutz Recke,et al.  Frequency locking of modulated waves , 2010, 1006.5518.

[19]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[20]  Lutz Recke,et al.  Abstract Forced Symmetry Breaking and Forced Frequency Locking of Modulated Waves , 1998 .

[21]  Björn Sandstede,et al.  All-Optical Clock Recovery Using Multisection Distributed-Feedback Lasers , 1999 .

[22]  Jan Sieber,et al.  Numerical Bifurcation Analysis for Multisection Semiconductor Lasers , 2002, SIAM J. Appl. Dyn. Syst..

[23]  Minoru Yamada,et al.  A theoretical analysis of self-sustained pulsation phenomena in narrow-stripe semiconductor lasers , 1993 .

[24]  Michael Field,et al.  Dynamics and Symmetry , 2007 .

[25]  N. Bogolyubov,et al.  Asymptotic Methods in the Theory of Nonlinear Oscillations , 1961 .