Polynomial Chaos–Based Bayesian Inference of K-Profile Parameterization in a General Circulation Model of the Tropical Pacific

AbstractThe authors present a polynomial chaos (PC)–based Bayesian inference method for quantifying the uncertainties of the K-profile parameterization (KPP) within the MIT general circulation model (MITgcm) of the tropical Pacific. The inference of the uncertain parameters is based on a Markov chain Monte Carlo (MCMC) scheme that utilizes a newly formulated test statistic taking into account the different components representing the structures of turbulent mixing on both daily and seasonal time scales in addition to the data quality, and filters for the effects of parameter perturbations over those as a result of changes in the wind. To avoid the prohibitive computational cost of integrating the MITgcm model at each MCMC iteration, a surrogate model for the test statistic using the PC method is built. Because of the noise in the model predictions, a basis-pursuit-denoising (BPDN) compressed sensing approach is employed to determine the PC coefficients of a representative surrogate model. The PC surrogate...

[1]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[2]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[3]  Ibrahim Hoteit,et al.  A new approach for the determination of the drag coefficient from the upper ocean response to a tropical cyclone: a feasibility study , 2012, Journal of Oceanography.

[4]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[5]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[6]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[7]  Mary F. Wheeler,et al.  Efficient Bayesian inference of subsurface flow models using nested sampling and sparse polynomial chaos surrogates , 2014 .

[8]  Alireza Doostan,et al.  A weighted l1-minimization approach for sparse polynomial chaos expansions , 2013, J. Comput. Phys..

[9]  H. Matthews,et al.  A climate sensitivity estimate using Bayesian fusion of instrumental observations and an Earth System model , 2012 .

[10]  John Marshall,et al.  Formulation and implementation of a ''residual-mean'' ocean circulation model , 2006 .

[11]  Omar M. Knio,et al.  Quantifying initial and wind forcing uncertainties in the Gulf of Mexico , 2016, Computational Geosciences.

[12]  Thomas Gerstner,et al.  Dimension–Adaptive Tensor–Product Quadrature , 2003, Computing.

[13]  Katja Fennel,et al.  Estimating time-dependent parameters for a biological ocean model using an emulator approach , 2012 .

[14]  Patrick Heimbach,et al.  An eddy-permitting, dynamically consistent adjoint-based assimilation system for the tropical Pacific: Hindcast experiments in 2000 , 2010 .

[15]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[16]  P. Gent,et al.  Validation of Vertical Mixing in an Equatorial Ocean Model Using Large Eddy Simulations and Observations , 1999 .

[17]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[18]  Omar M. Knio,et al.  Bayesian Inference of Drag Parameters Using AXBT Data from Typhoon Fanapi , 2013 .

[19]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[20]  BabuskaIvo,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007 .

[21]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[22]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[23]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[24]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[25]  Mrinal K. Sen,et al.  An Efficient Stochastic Bayesian Approach to Optimal Parameter and Uncertainty Estimation for Climate Model Predictions , 2004 .

[26]  Fabio Nobile,et al.  A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[27]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[28]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[29]  H. Najm,et al.  Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection , 2003 .

[30]  G. Forget Mapping Ocean Observations in a Dynamical Framework: A 2004–06 Ocean Atlas , 2010 .

[31]  Doreen Eichel,et al.  Data Analysis A Bayesian Tutorial , 2016 .

[32]  Youssef M. Marzouk,et al.  Adaptive Smolyak Pseudospectral Approximations , 2012, SIAM J. Sci. Comput..

[33]  Michael S. Eldred,et al.  Sparse Pseudospectral Approximation Method , 2011, 1109.2936.

[34]  Fabio Nobile,et al.  A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..

[35]  Knut Petras,et al.  On the Smolyak cubature error for analytic functions , 2000, Adv. Comput. Math..

[36]  M. Lemaire,et al.  Stochastic finite element: a non intrusive approach by regression , 2006 .

[37]  Omar M. Knio,et al.  Uncertainty quantification and inference of Manning's friction coefficients using DART buoy data during the Tōhoku tsunami , 2014 .

[38]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[39]  Tirtharaj Bhaumik,et al.  Double-Plume Integral Models for Near-Field Mixing in Multiphase Plumes , 2008 .

[40]  Fabio Nobile,et al.  An Anisotropic Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..

[41]  Utz Wever,et al.  Application of the Polynomial Chaos Expansion to the simulation of chemical reactors with uncertainties , 2012, Math. Comput. Simul..

[42]  A. Malinverno Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical problem , 2002 .

[43]  Stephan R. Sain,et al.  Fast Sequential Computer Model Calibration of Large Nonstationary Spatial-Temporal Processes , 2013, Technometrics.

[44]  Knut Petras,et al.  Fast calculation of coefficients in the Smolyak algorithm , 2001, Numerical Algorithms.

[45]  Nicholas Zabaras,et al.  Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .

[46]  James C. McWilliams,et al.  Sensitivity to Surface Forcing and Boundary Layer Mixing in a Global Ocean Model: Annual-Mean Climatology , 1997 .

[47]  Dongbin Xiu,et al.  High-Order Collocation Methods for Differential Equations with Random Inputs , 2005, SIAM J. Sci. Comput..

[48]  O. Knio,et al.  Propagation of uncertainty and sensitivity analysis in an integral oil‐gas plume model , 2016 .

[49]  B. Cornuelle,et al.  Impact of Resolution and Optimized ECCO Forcing on Simulations of the Tropical Pacific , 2008 .

[50]  O. Knio,et al.  Drag Parameter Estimation Using Gradients and Hessian from a Polynomial Chaos Model Surrogate , 2014 .

[51]  Habib N. Najm,et al.  Stochastic spectral methods for efficient Bayesian solution of inverse problems , 2005, J. Comput. Phys..

[52]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[53]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[54]  I. Hoteit,et al.  Metric of the 2–6 day sea-surface temperature response to wind stress in the Tropical Pacific and its sensitivity to the K-Profile Parameterization of vertical mixing , 2014 .

[55]  Habib N. Najm,et al.  Multiscale Stochastic Preconditioners in Non-intrusive Spectral Projection , 2012, J. Sci. Comput..

[56]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[57]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[58]  Omar M. Knio,et al.  Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach , 2012, Computational Geosciences.

[59]  Antonio J. Busalacchi,et al.  The Tropical Ocean‐Global Atmosphere observing system: A decade of progress , 1998 .

[60]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[61]  Daniel M. Tartakovsky,et al.  Uncertainty quantification for flow in highly heterogeneous porous media , 2004 .

[62]  L. Perelman,et al.  Hydrostatic, quasi‐hydrostatic, and nonhydrostatic ocean modeling , 1997 .

[63]  Justin Winokur,et al.  A priori testing of sparse adaptive polynomial chaos expansions using an ocean general circulation model database , 2013, Computational Geosciences.

[64]  Knut Petras,et al.  Smolyak cubature of given polynomial degree with few nodes for increasing dimension , 2003, Numerische Mathematik.

[65]  A. Gelman Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper) , 2004 .

[66]  K. Cheung,et al.  Spectral Sampling Method for Uncertainty Propagation in Long-Wave Runup Modeling , 2011 .