Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation

A soft dielectric membrane is prone to snap-through instability. We present theory and experiment to show that the instability can be harnessed to achieve giant voltage-triggered deformation. We mount a membrane on a chamber of a suitable volume, pressurize the membrane into a state near the verge of the instability, and apply a voltage to trigger the snap without causing electrical breakdown. For an acrylic membrane we demonstrate voltage-triggered expansion of area by 1692%, far beyond the largest value reported in the literature. The large expansion can even be retained after the voltage is switched off.

[1]  J. Plante,et al.  Bistable Antagonistic Dielectric Elastomer Actuators for Binary Robotics and Mechatronics , 2012, IEEE/ASME Transactions on Mechatronics.

[2]  I. Anderson,et al.  Soft generators using dielectric elastomers , 2011 .

[3]  Danilo De Rossi,et al.  Granularly Coupled Dielectric Elastomer Actuators , 2011, IEEE/ASME Transactions on Mechatronics.

[4]  Zhigang Suo,et al.  Dielectric Elastomer Generators: How Much Energy Can Be Converted? , 2011, IEEE/ASME Transactions on Mechatronics.

[5]  Tong-Yi Zhang,et al.  Molecular dynamics simulations of phase transition of lamellar lipid membrane in water under an electric field , 2011 .

[6]  D. De Rossi,et al.  Stretching Dielectric Elastomer Performance , 2010, Science.

[7]  Ingo Müller,et al.  Rubber and Rubber Balloons: Paradigms of Thermodynamics , 2010 .

[8]  Zhigang Suo,et al.  Resonant behavior of a membrane of a dielectric elastomer , 2010 .

[9]  Z. Suo,et al.  Theory of dielectric elastomers capable of giant deformation of actuation. , 2010, Physical review letters.

[10]  C. Keplinger,et al.  Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability , 2010, Proceedings of the National Academy of Sciences.

[11]  Q. Pei,et al.  Advances in dielectric elastomers for actuators and artificial muscles. , 2010, Macromolecular rapid communications.

[12]  Bin Chen,et al.  Large-strain, rigid-to-rigid deformation of bistable electroactive polymers , 2009 .

[13]  P. Dubois,et al.  Large-Stroke Dielectric Elastomer Actuators With Ion-Implanted Electrodes , 2009, Journal of Microelectromechanical Systems.

[14]  S. Michel,et al.  Stacked dielectric elastomer actuator for tensile force transmission , 2009 .

[15]  N. C. Goulbourne,et al.  On the dynamic electromechanical loading of dielectric elastomer membranes , 2008 .

[16]  D. Rossi,et al.  Dielectric elastomers as electromechanical transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology , 2008 .

[17]  Zhigang Suo,et al.  Electromechanical hysteresis and coexistent states in dielectric elastomers , 2007 .

[18]  Tushar K. Ghosh,et al.  Electroactive Nanostructured Polymers as Tunable Actuators , 2007 .

[19]  S. Dubowsky,et al.  Large-scale failure modes of dielectric elastomer actuators , 2006 .

[20]  Matthew D. Lichter,et al.  On the design of large degree-of-freedom digital mechatronic devices based on bistable dielectric elastomer actuators , 2006, IEEE/ASME Transactions on Mechatronics.

[21]  Eric Mockensturm,et al.  Dynamic response of dielectric elastomers , 2006 .

[22]  Sridhar Kota,et al.  IEEE/ASME TRANSACTIONS ON MECHATRONICS MANAGEMENT COMMITTEE , 2006 .

[23]  Edoardo Mazza,et al.  Modeling of a pre-strained circular actuator made of dielectric elastomers , 2005 .

[24]  U. Zimmermann,et al.  The mechanism of electrical breakdown in the membranes ofValonia utricularis , 1975, The Journal of Membrane Biology.

[25]  Ron Pelrine,et al.  Actuation Response of Polyacrylate Dielectric Elastomers , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[26]  Q. Pei,et al.  High-speed electrically actuated elastomers with strain greater than 100% , 2000, Science.

[27]  J. Weaver,et al.  Theory of electroporation: A review , 1996 .

[28]  A. Gent A New Constitutive Relation for Rubber , 1996 .

[29]  K. Stark,et al.  Electric Strength of Irradiated Polythene , 1955, Nature.