Regularity of Solution Maps of Differential Inclusions Under State Constraints

AbstractConsider a differential inclusion under state constraints $$x'(t) \in F(t,x(t)), \; x(t) \in K,$$where $F$ is an unbounded set-valued map with closed and convex images, which is measurable in $t$ and $k(t)$-Lipschitz in $x$ (with $k(\cdot)\in L^1$) and $K\subset\mathbb{R}^{n}$ is a closed set with smooth boundary. We provide sufficient conditions for the set-valued map $\xi_0 \leadsto {\cal S}^K_{[t_0,T\,]}(\xi_0)$ associating to each initial point $\xi_0 \in K$ the set of all solutions to the above constrained differential inclusion starting at $\xi_0$ to be pseudo-Lipschitz on $K$. This result is applied to investigate local Lipschitz continuity of the value function for the constrained Bolza problem of optimal control theory.

[1]  P. Lions,et al.  Hamilton-Jacobi equations with state constraints , 1990 .

[2]  F. Rampazzo,et al.  Filippov's and Filippov–Ważewski's Theorems on Closed Domains , 2000 .

[3]  B. Heimann,et al.  Fleming, W. H./Rishel, R. W., Deterministic and Stochastic Optimal Control. New York‐Heidelberg‐Berlin. Springer‐Verlag. 1975. XIII, 222 S, DM 60,60 , 1979 .

[4]  Pierre Cardaliaguet,et al.  Invariant Solutions of Differential Games and Hamilton--Jacobi--Isaacs Equations for Time-Measurable Hamiltonians , 2000, SIAM J. Control. Optim..

[5]  Piermarco Cannarsa,et al.  Some characterizations of optimal trajectories in control theory , 1991 .

[6]  J. Aubin,et al.  Applied Nonlinear Analysis , 1984 .

[7]  Marc Quincampoix,et al.  Zero-sum state constrained differential games: existence of value for Bolza problem , 2006, Int. J. Game Theory.

[8]  Halina Frankowska,et al.  Measurable Viability Theorems and the Hamilton-Jacobi-Bellman Equation , 1995 .

[9]  Halina Frankowska,et al.  Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equation , 1987, 26th IEEE Conference on Decision and Control.

[10]  H. Frankowska Optimal trajectories associated to a solution of contingent Hamilton-Jacobi equation , 1987 .

[11]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[12]  M. Delfour,et al.  Shape Analysis via Oriented Distance Functions , 1994 .

[13]  H. Frankowska,et al.  A measurable upper semicontinuous viability theorem for tubes , 1996 .

[14]  Pierre-Louis Lions,et al.  Continuity of admissible trajectories for state constraints control problems , 1996 .

[15]  H. Soner Optimal control with state-space constraint I , 1986 .

[16]  Jean-Pierre Aubin,et al.  Viability theory , 1991 .

[17]  Michel C. Delfour,et al.  Oriented distance function and its evolution equation for initial sets with thin boundary , 2003, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).