A Bayesian Probability Model Can Simulate the Knowledge of Soybean Rust Researchers to Optimize the Application of Fungicides
暂无分享,去创建一个
José Carlos Ferreira da Rocha | Gregory Vinícius Conor Figueiredo | Lucas Henrique Fantin | Marcelo Giovanetti Canteri | David de Souza Jaccoud Filho | J. C. F. D. Rocha | M. Canteri | D. J. Filho | L. H. Fantin | M. G. Canteri
[1] Dayou Liu,et al. Mathematical modeling for active and dynamic diagnosis of crop diseases based on Bayesian networks and incremental learning , 2013, Math. Comput. Model..
[2] Marek J. Druzdzel,et al. Knowledge Engineering for Bayesian Networks: How Common Are Noisy-MAX Distributions in Practice? , 2006, IEEE Transactions on Systems, Man, and Cybernetics: Systems.
[3] Kerrie Mengersen,et al. Utility of Bayesian networks in QMRA-based evaluation of risk reduction options for recycled water. , 2016, The Science of the total environment.
[5] Mark P. Styczynski,et al. From genome-scale data to models of infectious disease: A Bayesian network-based strategy to drive model development. , 2015, Mathematical biosciences.
[6] E. M. Reis,et al. Models and applications for risk assessment and prediction of Asian soybean rust epidemics , 2006 .
[7] Sheila Ariana Xavier,et al. Older leaf tissues in younger plants are more susceptible to soybean rust , 2017 .
[8] L. C. Carneiro,et al. Influência do estádio fenológico e da idade dos trifólios de soja na infecção de Phakopsora pachyrhizi , 2009 .
[9] Erlei Melo Reis,et al. Development and validation of a fungicide scoring system for management of late season soybean diseases in Argentina , 2015 .
[10] E. M. Reis,et al. In vivo sensitivity of Phakopsora pachyrhizi to DMI and QoI fungicides , 2015 .
[11] N. J. Fox,et al. Challenges and priorities for modelling livestock health and pathogens in the context of climate change. , 2016, Environmental research.
[12] L. L. May De Mio,et al. Detection of the F129L mutation in the cytochrome b gene in Phakopsora pachyrhizi. , 2016, Pest management science.
[13] O. Saab,et al. Application of prediction models of asian soybean rust in two crop seasons, in Londrina, Pr , 2016 .
[14] C. Godoy,et al. Eficiência do controle da ferrugem asiática da soja em função do momento de aplicação sob condições de epidemia em Londrina, PR , 2009 .
[15] Spectral characterization and quantification of Phakopsora pachyrhizi urediniospores by Fourier transformed infrared with attenuated total reflectance , 2019, European Journal of Plant Pathology.
[16] R. Oliver,et al. Governing principles can guide fungicide-resistance management tactics. , 2014, Annual review of phytopathology.
[17] Ian R. Craig,et al. Sensitivity of Phakopsora pachyrhizi towards quinone-outside-inhibitors and demethylation-inhibitors, and corresponding resistance mechanisms. , 2014, Pest management science.
[18] C. Godoy,et al. Risk and management of fungicide resistance in the Asian soybean rust fungus Phakopsora pachyrhizi. , 2012 .
[19] Scott A Sisson,et al. Modelling pathogen log10 reduction values achieved by activated sludge treatment using naïve and semi naïve Bayes network models. , 2015, Water research.
[20] C. Godoy,et al. Ferrugem-asiática da soja no Brasil: passado, presente e futuro , 2016 .
[21] D. A. Andrade,et al. Ferrugem asiática: uma ameaça à sojicultura brasileira. , 2002 .
[22] Maryam Ramezani,et al. Design a new mixed expert decision aiding system using fuzzy ELECTRE III method for vendor selection , 2009, Expert Syst. Appl..
[23] W. Igarashi,et al. Duração e porcentagem de molhamento foliar determinados pelo espaçamento entrelinhas, e influência sobre a ferrugem asiática da soja , 2014 .
[24] H. Takahashi,et al. Balance among calcium, magnesium and potassium levels affecting Asian Soybean Rust severity , 2015 .
[25] J. S. Melching,et al. Effects of Duration, Frequency, and Temperature of Leaf Wetness Periods on Soybean Rust , 1989 .
[26] C. Godoy,et al. Variação da sensibilidade de populações de Phakopsora pachyrhizi a fungicidas inibidores da desmetilação no Brasil. , 2015 .
[27] P. Paul,et al. Temporal Dynamics of Soybean Rust Associated With Leaf Area Index in Soybean Cultivars of different Maturity Groups. , 2015, Plant disease.
[28] Marcelo de Carvalho Alves,et al. Adaptive neuro-fuzzy inference systems for epidemiological analysis of soybean rust , 2011, Environ. Model. Softw..
[29] First detection of a SDH variant with reduced SDHI sensitivity in Phakopsora pachyrhizi , 2018 .