Catalan Numbers, Their Generalization, and Their Uses

Probably the most prominent among the special integers that arise in combinatorial contexts are the binomial coefficients (~). These have many uses and, often, fascinating interpretations [9]. We would like to stress one particular interpretation in terms of paths on the integral lattice in the coordinate plane, and discuss the celebrated ballot problem using this interpretation. A path is a sequence of points Po P1 9 9 9 Pro, m >I O, where each P, is a lattice point (that is, a point with integer coordinates) and Pz+l, i 1> 0, is obtained by stepping one unit east or one unit north of P,. We say that this is a path from P to Q if Po = P, Pm= Q. It is now easy to count the number of paths.

[1]  W. Wirtinger,et al.  Allgemeine Funktionentheorie und elliptische Funktionen , 1923 .

[2]  G. Pólya,et al.  Aufgaben und Lehrsätze aus der Analysis , 1926, Mathematical Gazette.

[3]  O. D. Kellogg Book Review: Vorlesungen über allgemeine Funktionentheorie und elliptische Funktionen von Adolf Hurwitz, herausgegeben und ergänzt durch einen Abschnitt über geometrische Funktionentheorie von R. Courant , 1926 .

[4]  T. Motzkin,et al.  Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products , 1948 .

[5]  K. Chung,et al.  On fluctuations in coin tossing. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[6]  G. Pólya On Picture-Writing , 1956 .

[7]  I. J. Good,et al.  Generalizations to several variables of Lagrange's expansion, with applications to stochastic processes , 1960, Mathematical Proceedings of the Cambridge Philosophical Society.

[8]  G. N. Raney Functional composition patterns and power series reversion , 1960 .

[9]  W. G. Brown,et al.  Historical Note on a Recurrent Combinatorial Problem , 1965 .

[10]  D. Klarner,et al.  Correspondences between plane trees and binary sequences , 1970 .

[11]  N. Sloane A Handbook Of Integer Sequences , 1973 .

[12]  S. G. Mohanty,et al.  On the enumeration of certain sets of planted plane trees , 1975 .

[13]  A. D. Sands,et al.  On generalised catalan numbers , 1978, Discret. Math..

[14]  D. G. Rogers,et al.  Pascal triangles, Catalan numbers and renewal arrays , 1978, Discret. Math..

[15]  Nachum Dershowitz,et al.  Enumerations of ordered trees , 1980, Discret. Math..

[16]  Masako Sato,et al.  One-dimensional random walk with unequal step lengths restricted by an absorbing barrier , 1982, Discret. Math..

[17]  Counting and recounting , 1983 .

[18]  Ralph P. Grimaldi,et al.  Discrete and combinatorial mathematics , 1985 .

[19]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[20]  Wenchang Chu,et al.  A new combinatorial interpretation for generalized Catalan number , 1987, Discret. Math..

[21]  G. Alexanderson,et al.  Discrete and combinatorial mathematics , 1987 .

[22]  Roger B. Eggleton,et al.  Catalan Strikes Again! How Likely Is a Function to Be Convex? , 1988 .

[23]  EXTENDING THE BINOMIAL COEFFICIENTS TO PRESERVE SYMMETRY AND PATTERN , 1989 .