Effective thermal conductivity and heat transfer characteristics for a series of lightweight lattice core sandwich panels

[1]  D. Fang,et al.  Mechanical properties of Invar 36 alloy additively manufactured by selective laser melting , 2020 .

[2]  Chenguang Huang,et al.  Performance improvement of integrated thermal protection system using shaped-stabilized composite phase change material , 2020 .

[3]  A. Nakayama,et al.  Quick estimate of effective thermal conductivity for fluid-saturated metal frame and prismatic cellular structures , 2019, Applied Thermal Engineering.

[4]  Lu Zhang,et al.  Integrated thermal protection system based on C/SiC composite corrugated core sandwich plane structure , 2019, Aerospace Science and Technology.

[5]  Zhonggang Wang,et al.  Experimental investigation on bending behavior of honeycomb sandwich panel with ceramic tile face-sheet , 2019, Composites Part B: Engineering.

[6]  Q. Qin,et al.  Dynamic collapse of metal self-similar hierarchical corrugated sandwich plates , 2019, Acta Mechanica.

[7]  Q. Qin,et al.  Dynamic response of double-layer rectangular sandwich plates with metal foam cores subjected to blast loading , 2018, International Journal of Impact Engineering.

[8]  Weiwei Li,et al.  Approaching perfect energy absorption through structural hierarchy , 2018, International Journal of Engineering Science.

[9]  Lin-zhi Wu,et al.  Fabrication and mechanical properties of three-dimensional enhanced lattice truss sandwich structures , 2018, Journal of Sandwich Structures & Materials.

[10]  Hongwei Song,et al.  High-power laser resistance of filled sandwich panel with truss core: An experimental study , 2018, Composite Structures.

[11]  Xujing Yang,et al.  Structural and thermal analysis of integrated thermal protection systems with C/SiC composite cellular core sandwich panels , 2018 .

[12]  T. Zeng,et al.  High temperature mechanical properties of lightweight C/SiC composite pyramidal lattice core sandwich panel , 2017 .

[13]  Yingjie Huang,et al.  Mechanical behavior of three-dimensional pyramidal aluminum lattice materials , 2017 .

[14]  Sergey A. Lurie,et al.  Design of the corrugated-core sandwich panel for the arctic rescue vehicle , 2017 .

[15]  D. Fang,et al.  Design and analysis of integrated thermal protection system based on lightweight C/SiC pyramidal lattice core sandwich panel , 2016 .

[16]  A. Ortona,et al.  Sandwich structured ceramic matrix composites with periodic cellular ceramic cores: an active cooled thermal protection for space vehicles , 2016 .

[17]  Shripad P. Mahulikar,et al.  Selection of Materials and Design of Multilayer Lightweight Passive Thermal Protection System , 2016 .

[18]  Stefanie Feih,et al.  Failure and energy absorption characteristics of advanced 3D truss core structures , 2016 .

[19]  Daining Fang,et al.  The equivalent thermal conductivity of lattice core sandwich structure: A predictive model , 2016 .

[20]  Bing Pan,et al.  Thermo-mechanical response of superalloy honeycomb sandwich panels subjected to non-steady thermal loading , 2015 .

[21]  D. Fang,et al.  Collapse criteria for high temperature ceramic lattice truss materials , 2015 .

[22]  D. Fang,et al.  Fabrication and heat transfer characteristics of C/SiC pyramidal core lattice sandwich panel , 2015 .

[23]  Stefanie Feih,et al.  Performance of bio-inspired Kagome truss core structures under compression and shear loading , 2014 .

[24]  D. Fang,et al.  Heat transfer mechanism of the C/SiC ceramics pyramidal lattice composites , 2014 .

[25]  Arun Shukla,et al.  Experimental and numerical study of foam filled corrugated core steel sandwich structures subjected to blast loading , 2014 .

[26]  H. Wadley,et al.  Hybrid core carbon fiber composite sandwich panels: Fabrication and mechanical response , 2014 .

[27]  Gauthier Picard,et al.  Dynamic Design Space Partitioning for Optimization of an Integrated Thermal Protection System , 2013 .

[28]  Fabio Gori,et al.  Theoretical prediction of thermal conductivity for thermal protection systems , 2012 .

[29]  Frank W. Zok,et al.  Deformation stabilization of lattice structures via foam addition , 2012 .

[30]  Lin-zhi Wu,et al.  Mechanical behaviour of CFRP sandwich structures with tetrahedral lattice truss cores , 2012 .

[31]  D. Glass Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles , 2008 .

[32]  Raphael T. Haftka,et al.  (Student Paper) Analysis and Design of Corrugated-Core Sandwich Panels for Thermal Protection Systems of Space Vehicles , 2006 .

[33]  D. Grosch,et al.  Thermal Protection System (TPS) Impact Experiments , 2006 .

[34]  H. Wadley,et al.  Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium , 2004, Acta Materialia.

[35]  Huadong Zhu,et al.  Analysis of TPS Sandwich Panel with Foam Core , 2004 .

[36]  H. Hodson,et al.  Fluid-flow and endwall heat-transfer characteristics of an ultralight lattice-frame material , 2004 .

[37]  Burkhard Behrens,et al.  Technologies for thermal protection systems applied on re-usable launcher , 2003 .

[38]  Daryabeigi Kamran,et al.  Heat Transfer in Adhesively Bonded Honeycomb Core Panels , 2001 .

[39]  D. Fang,et al.  Mechanical analysis and modeling of metallic lattice sandwich additively fabricated by selective laser melting , 2020 .

[40]  Donghuan Liu,et al.  Comparisons of equivalent and detailed models of metallic honeycomb core structures with in-plane thermal conductivities , 2012 .

[41]  Javad Fatemi,et al.  Effective thermal/mechanical properties of honeycomb core panels for hot structure applications , 2009 .