The Co-existence of Different Synchronization Types in Fractional-order Discrete-time Chaotic Systems with Non–identical Dimensions and Orders

This paper is concerned with the co-existence of different synchronization types for fractional-order discrete-time chaotic systems with different dimensions. In particular, we show that through appropriate nonlinear control, projective synchronization (PS), full state hybrid projective synchronization (FSHPS), and generalized synchronization (GS) can be achieved simultaneously. A second nonlinear control scheme is developed whereby inverse full state hybrid projective synchronization (IFSHPS) and inverse generalized synchronization (IGS) are shown to co-exist. Numerical examples are presented to confirm the findings.

[1]  Dumitru Baleanu,et al.  Stability analysis of Caputo-like discrete fractional systems , 2017, Commun. Nonlinear Sci. Numer. Simul..

[2]  Adel Ouannas,et al.  Inverse full state hybrid projective synchronization for chaotic maps with different dimensions , 2016 .

[3]  B. Sharma,et al.  Investigation of chaos in fractional order generalized hyperchaotic Henon map , 2017 .

[4]  Thabet Abdeljawad,et al.  On Riemann and Caputo fractional differences , 2011, Comput. Math. Appl..

[5]  Raghib Abu-Saris,et al.  On the asymptotic stability of linear system of fractional-order difference equations , 2013 .

[6]  Zhenying Liang,et al.  Chaotic Path Planner of Autonomous Mobile Robots Based on the Standard Map for Surveillance Missions , 2015 .

[7]  Qun Ding,et al.  A New Two-Dimensional Map with Hidden Attractors , 2018, Entropy.

[8]  N. N. Verichev,et al.  Stochastic synchronization of oscillations in dissipative systems , 1986 .

[9]  T. Hayat,et al.  Fractional analysis of co-existence of some types of chaos synchronization , 2017 .

[10]  S M Pincus,et al.  Approximate entropy as a measure of system complexity. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[11]  S. Bendoukha,et al.  COEXISTENCE OF SOME CHAOS SYNCHRONIZATION TYPES IN FRACTIONAL-ORDER DIFFERENTIAL EQUATIONS , 2017 .

[12]  Viet-Thanh Pham,et al.  Coexistence of identical synchronization, antiphase synchronization and inverse full state hybrid projective synchronization in different dimensional fractional-order chaotic systems , 2018 .

[13]  Louis M Pecora,et al.  Synchronization of chaotic systems. , 2015, Chaos.

[14]  Dumitru Baleanu,et al.  Chaos synchronization of the discrete fractional logistic map , 2014, Signal Process..

[15]  M. Hénon,et al.  A two-dimensional mapping with a strange attractor , 1976 .

[16]  D. Hitzl,et al.  An exploration of the Hénon quadratic map , 1985 .

[17]  Maamar Bettayeb,et al.  A new contribution for the impulsive synchronization of fractional-order discrete-time chaotic systems , 2017 .

[18]  Sundarapandian Vaidyanathan,et al.  New hybrid synchronisation schemes based on coexistence of various types of synchronisation between master-slave hyperchaotic systems , 2017, Int. J. Comput. Appl. Technol..

[19]  Giuseppe Grassi,et al.  Projective Synchronization via a Linear Observer: Application to Time-Delay, Continuous-Time and Discrete-Time Systems , 2007, Int. J. Bifurc. Chaos.

[20]  Viet-Thanh Pham,et al.  Dynamic Analysis of Complex Synchronization Schemes between Integer Order and Fractional Order Chaotic Systems with Different Dimensions , 2017, Complex..

[21]  R. Agarwal,et al.  Fractional Sums and Differences with Binomial Coefficients , 2013 .

[22]  Dorota Mozyrska,et al.  The -Transform Method and Delta Type Fractional Difference Operators , 2015 .

[23]  Yong Liu,et al.  Chaotic synchronization between linearly coupled discrete fractional Hénon maps , 2016 .

[24]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. III Mapping Model for Continuous System , 1984 .

[25]  S. Pincus Approximate entropy (ApEn) as a complexity measure. , 1995, Chaos.

[26]  Ahmad Taher Azar,et al.  A new type of hybrid synchronization between arbitrary hyperchaotic maps , 2016, International Journal of Machine Learning and Cybernetics.

[27]  Adel Ouannas,et al.  Generalized synchronization of different dimensional chaotic dynamical systems in discrete time , 2015 .

[28]  Yasser Shekofteh,et al.  A New Chaotic System with a Self-Excited Attractor: Entropy Measurement, Signal Encryption, and Parameter Estimation , 2018, Entropy.

[29]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[30]  J. Cermák,et al.  On explicit stability conditions for a linear fractional difference system , 2015 .

[31]  R. Lozi UN ATTRACTEUR ÉTRANGE (?) DU TYPE ATTRACTEUR DE HÉNON , 1978 .

[32]  Paul W. Eloe,et al.  DISCRETE FRACTIONAL CALCULUS WITH THE NABLA OPERATOR , 2009 .

[33]  Baier,et al.  Design of hyperchaotic flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  Kim-Fung Man,et al.  Online Secure Chatting System Using Discrete Chaotic Map , 2004, Int. J. Bifurc. Chaos.

[35]  D. Baleanu,et al.  Chaos synchronization of fractional chaotic maps based on the stability condition , 2016 .

[36]  Li Liu,et al.  Chaos Synchronization of Nonlinear Fractional Discrete Dynamical Systems via Linear Control , 2017, Entropy.

[37]  Adel Ouannas,et al.  On Inverse Generalized Synchronization of Continuous Chaotic Dynamical Systems , 2016 .

[38]  Adel Ouannas,et al.  On Full-State Hybrid Projective Synchronization of General Discrete Chaotic Systems , 2014 .

[39]  Adel Ouannas,et al.  Nonlinear methods to control synchronization between fractional-order and integer-order chaotic systems , 2018 .

[40]  Adel Ouannas,et al.  A new approach to study the coexistence of some synchronization types between chaotic maps with different dimensions , 2016 .

[41]  T. Hu Discrete Chaos in Fractional Henon Map , 2014 .

[42]  Santo Banerjee,et al.  Chaos and Cryptography: A new dimension in secure communications , 2014 .

[43]  Ljupco Kocarev,et al.  Discrete Chaos-I: Theory , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[44]  Anastasios Bezerianos,et al.  Secure communication protocols with discrete nonlinear chaotic maps , 2001, J. Syst. Archit..

[45]  N. A. A. Fataf,et al.  Synchronization between two discrete chaotic systems for secure communications , 2016, 2016 IEEE Sixth International Conference on Communications and Electronics (ICCE).

[46]  H. Fujisaka,et al.  Stability Theory of Synchronized Motion in Coupled-Oscillator Systems. II: The Mapping Approach , 1983 .

[47]  Viet-Thanh Pham,et al.  On Chaos in the Fractional-Order Discrete-Time Unified System and Its Control Synchronization , 2018, Entropy.

[48]  A. Peterson,et al.  Discrete Fractional Calculus , 2016 .