Aptamers from cell-based selection for bioanalytical applications.

Weihong Tan,*,†,‡ Michael J. Donovan,†,‡ and Jianhui Jiang*,†,‡ †Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Biology and College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, People’s Republic of China ‡Center For Research at Bio/nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, Shands Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611, United States

[1]  Hisataka Kobayashi,et al.  Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases. , 2009, Molecular pharmaceutics.

[2]  Milica Radisic,et al.  Microfluidic depletion of endothelial cells, smooth muscle cells, and fibroblasts from heterogeneous suspensions. , 2008, Lab on a chip.

[3]  Weihong Tan,et al.  Cancer cell targeting using multiple aptamers conjugated on nanorods. , 2008, Analytical chemistry.

[4]  R Handgretinger,et al.  Detection of circulating melanoma cells by immunomagnetic cell sorting , 1999, Journal of clinical laboratory analysis.

[5]  Jun‐Jie Zhu,et al.  Aptamer-quantum dots conjugates-based ultrasensitive competitive electrochemical cytosensor for the detection of tumor cell. , 2011, Talanta.

[6]  Sergey N Krylov,et al.  Aptamer-facilitated biomarker discovery (AptaBiD). , 2008, Journal of the American Chemical Society.

[7]  Darryl B. Hardie,et al.  Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). , 2004, Journal of proteome research.

[8]  Mehmet Toner,et al.  Enrichment using antibody-coated microfluidic chambers in shear flow: model mixtures of human lymphocytes. , 2005, Biotechnology and bioengineering.

[9]  C D Claussen,et al.  Aptamer-based isolation and subsequent imaging of mesenchymal stem cells in ischemic myocard by magnetic resonance imaging. , 2007, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[10]  Ronghua Yang,et al.  Regulation of singlet oxygen generation using single-walled carbon nanotubes. , 2008, Journal of the American Chemical Society.

[11]  Steven Gutman,et al.  Opinion: The US Food and Drug Administration perspective on cancer biomarker development , 2006, Nature Reviews Cancer.

[12]  C. Ferreira,et al.  DNA Aptamers That Bind to MUC1 Tumour Marker: Design and Characterization of MUC1-Binding Single-Stranded DNA Aptamers , 2006, Tumor Biology.

[13]  Tom Greene,et al.  Assessing kidney function--measured and estimated glomerular filtration rate. , 2006, The New England journal of medicine.

[14]  J. Sennello,et al.  In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. , 1997, Chemistry & biology.

[15]  Mehmet Toner,et al.  A microfluidic device for practical label-free CD4(+) T cell counting of HIV-infected subjects. , 2007, Lab on a chip.

[16]  Ioanis Katakis,et al.  Aptamers: molecular tools for analytical applications , 2008, Analytical and bioanalytical chemistry.

[17]  Ying Li,et al.  Aptamers evolved from cultured cancer cells reveal molecular differences of cancer cells in patient samples. , 2007, Clinical chemistry.

[18]  Michael Olivier,et al.  Improved method for the analysis of membrane proteins by mass spectrometry. , 2007, Physiological genomics.

[19]  A. Mes-Masson,et al.  Characterization of four novel epithelial ovarian cancer cell lines , 2000, In Vitro Cellular & Developmental Biology - Animal.

[20]  Ronghua Yang,et al.  Carbon nanotubes protect DNA strands during cellular delivery. , 2008, ACS nano.

[21]  P. Leung,et al.  Oviductal Glycoprotein (OVGP1, MUC9): A Differentiation-Based Mucin Present in Serum of Women With Ovarian Cancer , 2009, International Journal of Gynecologic Cancer.

[22]  P. Choyke,et al.  H-type dimer formation of fluorophores: a mechanism for activatable, in vivo optical molecular imaging. , 2009, ACS chemical biology.

[23]  Dorian Liepmann,et al.  Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel. , 2005, Lab on a chip.

[24]  Fengting Lv,et al.  Aptamer-based polymerase chain reaction for ultrasensitive cell detection. , 2012, Chemical communications.

[25]  Won Jun Kang,et al.  Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. , 2009, Small.

[26]  T. López,et al.  Stabilization of dopamine in nanosilica sol-gel matrix to be used as a controlled drug delivery system , 2007 .

[27]  Y. Kawarada,et al.  Tenascin is a stromal marker for epithelial malignancy in the mammary gland. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Yoon-Koo Kang,et al.  Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial , 2010, The Lancet.

[29]  M. Bergström,et al.  Radiolabelled oligonucleotides for imaging of gene expression with PET. , 2009, Current medicinal chemistry.

[30]  Koji Sode,et al.  Improvement of Aptamer Affinity by Dimerization , 2008, Sensors.

[31]  Weihong Tan,et al.  Enrichment of cancer cells using aptamers immobilized on a microfluidic channel. , 2009, Analytical chemistry.

[32]  Weihong Tan,et al.  Molecular assembly for high-performance bivalent nucleic acid inhibitor , 2008, Proceedings of the National Academy of Sciences.

[33]  Mehmet Toner,et al.  Detection of mutations in EGFR in circulating lung-cancer cells. , 2008, The New England journal of medicine.

[34]  K. Gehring,et al.  An RNA Aptamer That Selectively Inhibits the Enzymatic Activity of Protein Tyrosine Phosphatase 1B in vitro , 2010, Chembiochem : a European journal of chemical biology.

[35]  Marcelino Bernardo,et al.  A target cell-specific activatable fluorescence probe for in vivo molecular imaging of cancer based on a self-quenched avidin-rhodamine conjugate. , 2007, Cancer research.

[36]  M. Alsina,et al.  CA-125 Response Patterns in Patients With Recurrent Ovarian Cancer Treated With Pegylated Liposomal Doxorubicin (PLD) , 2009, International Journal of Gynecologic Cancer.

[37]  Tristan Barrett,et al.  Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes , 2009, Nature Medicine.

[38]  R. Ghossein,et al.  Molecular detection and characterisation of circulating tumour cells and micrometastases in solid tumours. , 2000, European journal of cancer.

[39]  Rebecca Richards-Kortum,et al.  Aptamer-Targeted Gold Nanoparticles As Molecular-Specific Contrast Agents for Reflectance Imaging , 2008, Bioconjugate chemistry.

[40]  Weihong Tan,et al.  Cell-specific aptamer probes for membrane protein elucidation in cancer cells. , 2008, Journal of proteome research.

[41]  Sung Ho Ryu,et al.  A Nucleolin-Targeted Multimodal Nanoparticle Imaging Probe for Tracking Cancer Cells Using an Aptamer , 2010, Journal of Nuclear Medicine.

[42]  Bertrand Tavitian,et al.  Neutralizing Aptamers from Whole-Cell SELEX Inhibit the RET Receptor Tyrosine Kinase , 2005, PLoS biology.

[43]  Kemin Wang,et al.  Activatable aptamer probe for contrast-enhanced in vivo cancer imaging based on cell membrane protein-triggered conformation alteration , 2011, Proceedings of the National Academy of Sciences.

[44]  R. Weissleder,et al.  Imaging in the era of molecular oncology , 2008, Nature.

[45]  Ying-Fon Chang,et al.  Tumor targeting by an aptamer. , 2006, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[46]  Weihong Tan,et al.  Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. , 2006, Analytical chemistry.

[47]  Anant Kumar Singh,et al.  Gold nano-popcorn attached SWCNT hybrid nanomaterial for targeted diagnosis and photothermal therapy of human breast cancer cells. , 2011, ACS applied materials & interfaces.

[48]  Vasilis Ntziachristos,et al.  Shedding light onto live molecular targets , 2003, Nature Medicine.

[49]  Lloyd M. Smith,et al.  Lectin-modified microchannels for mammalian cell capture and purification , 2007, Biomedical microdevices.

[50]  Robert Langer,et al.  Superparamagnetic Iron Oxide Nanoparticle-Aptamer Bioconjugates for Combined Prostate Cancer Imaging and Therapy , 2011 .

[51]  Tao Chen,et al.  Pattern recognition of cancer cells using aptamer-conjugated magnetic nanoparticles. , 2012, ACS nano.

[52]  L. Gold,et al.  A tenascin-C aptamer identified by tumor cell SELEX: Systematic evolution of ligands by exponential enrichment , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Baoxin Li,et al.  A sensitive, label-free, aptamer-based biosensor using a gold nanoparticle-initiated chemiluminescence system. , 2011, Chemistry.

[54]  G. Mayer,et al.  Multidomain Targeting Generates a High‐Affinity Thrombin‐Inhibiting Bivalent Aptamer , 2007, Chembiochem : a European journal of chemical biology.

[55]  D. Shangguan,et al.  Aptamers evolved from live cells as effective molecular probes for cancer study , 2006, Proceedings of the National Academy of Sciences.

[56]  Weihong Tan,et al.  DNA aptamer–micelle as an efficient detection/delivery vehicle toward cancer cells , 2009, Proceedings of the National Academy of Sciences.

[57]  Hakho Lee,et al.  Rapid detection and profiling of cancer cells in fine-needle aspirates , 2009, Proceedings of the National Academy of Sciences.

[58]  R. Bast,et al.  Malignant transformation of ovarian epithelium. , 1992, Journal of the National Cancer Institute.

[59]  Kemin Wang,et al.  Selection of aptamers for molecular recognition and characterization of cancer cells. , 2007, Analytical chemistry.

[60]  M. Estévez,et al.  Using aptamer-conjugated fluorescence resonance energy transfer nanoparticles for multiplexed cancer cell monitoring. , 2009, Analytical chemistry.

[61]  M. Molloy,et al.  Membrane proteins and proteomics: Un amour impossible? , 2000, Electrophoresis.

[62]  Byungkyu Kim,et al.  Label-free, microfluidic separation and enrichment of human breast cancer cells by adhesion difference. , 2007, Lab on a chip.

[63]  M. W. Vaughn,et al.  Recognition and capture of breast cancer cells using an antibody-based platform in a microelectromechanical systems device , 2007, Biomedical microdevices.

[64]  M. W. Vaughn,et al.  Microfluidic-based diagnostics for cervical cancer cells. , 2006, Biosensors & bioelectronics.

[65]  W. Tan,et al.  Capturing cancer cells using aptamer-immobilized square capillary channels. , 2011, Molecular bioSystems.

[66]  Roger Y Tsien,et al.  Tumor imaging by means of proteolytic activation of cell-penetrating peptides. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[67]  David Allman,et al.  Regulation of peripheral B cell maturation. , 2006, Cellular immunology.

[68]  Dinshaw J. Patel,et al.  Structure, recognition and adaptive binding in RNA aptamer complexes. , 1997, Journal of molecular biology.

[69]  Wu Liu,et al.  Rare cell chemiluminescence detection based on aptamer-specific capture in microfluidic channels. , 2011, Biosensors & bioelectronics.

[70]  Weihong Tan,et al.  Generating aptamers for recognition of virus-infected cells. , 2009, Clinical chemistry.

[71]  S. Ringquist,et al.  Anti-L-selectin aptamers: binding characteristics, pharmacokinetic parameters, and activity against an intravascular target in vivo. , 2000, Antisense & nucleic acid drug development.

[72]  J. Yates,et al.  The application of mass spectrometry to membrane proteomics , 2003, Nature Biotechnology.

[73]  D. Shangguan,et al.  Development of DNA aptamers using Cell-SELEX , 2010, Nature Protocols.

[74]  R. Djukanović,et al.  Production of IL-8 and IL-4 by positively and negatively selected CD4+ and CD8+ human T cells following a four-step cell separation method including magnetic cell sorting (MACS). , 1996, Journal of immunological methods.

[75]  Hai‐Ling Margaret Cheng,et al.  Concurrent Dual Contrast for Cellular Magnetic Resonance Imaging Using Gadolinium Oxide and Iron Oxide Nanoparticles , 2012, International journal of molecular imaging.

[76]  Colin D. Medley,et al.  Synthesis and investigation of deoxyribonucleic acid/locked nucleic acid chimeric molecular beacons , 2007, Nucleic acids research.

[77]  M. L. Blair,et al.  Capture and enrichment of CD34-positive haematopoietic stem and progenitor cells from blood circulation using P-selectin in an implantable device , 2008, British journal of haematology.

[78]  F. Luo,et al.  Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis. , 2007, Biochemical and biophysical research communications.

[79]  Xiangling Xiong,et al.  Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. , 2011, ACS nano.

[80]  Hisataka Kobayashi,et al.  Activatable fluorescent molecular imaging of peritoneal metastases following pretargeting with a biotinylated monoclonal antibody. , 2007, Cancer research.

[81]  Milica Radisic,et al.  Peptide-mediated selective adhesion of smooth muscle and endothelial cells in microfluidic shear flow. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[82]  Colin D. Medley,et al.  Locked nucleic acid based beacons for surface interaction studies and biosensor development. , 2009, Analytical chemistry.

[83]  A. Pardi,et al.  High-resolution molecular discrimination by RNA. , 1994, Science.

[84]  J. Liesveld,et al.  P-Selectin coated microtube for enrichment of CD34+ hematopoietic stem and progenitor cells from human bone marrow. , 2008, Clinical chemistry.

[85]  D. Shangguan,et al.  Aptamer Directly Evolved from Live Cells Recognizes Membrane Bound Immunoglobin Heavy Mu Chain in Burkitt's Lymphoma Cells*S , 2007, Molecular & Cellular Proteomics.

[86]  Weihong Tan,et al.  Identification of liver cancer-specific aptamers using whole live cells. , 2008, Analytical chemistry.

[87]  N. Janjić,et al.  Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. , 1995, Chemistry & biology.

[88]  R. Tsien,et al.  Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases , 2010, Proceedings of the National Academy of Sciences.

[89]  U. Gbureck,et al.  Correlation between heparin release and polymerization degree of organically modified silica xerogels from 3-methacryloxypropylpolysilsesquioxane. , 2007, Acta biomaterialia.

[90]  M. Chatterjee,et al.  Update on ovarian cancer screening , 2007, Current opinion in obstetrics & gynecology.

[91]  Dimitri Pappas,et al.  Open-tubular capillary cell affinity chromatography: single and tandem blood cell separation. , 2008, Analytical chemistry.

[92]  M. Seller,et al.  Unusual case of Smith-Lemli-Opitz syndrome "type II". , 1995, American journal of medical genetics.

[93]  Weihong Tan,et al.  Aptamer-based microfluidic device for enrichment, sorting, and detection of multiple cancer cells. , 2009, Analytical chemistry.

[94]  Kelong Wang,et al.  Cellular separations: a review of new challenges in analytical chemistry. , 2007, Analytica chimica acta.

[95]  Weihong Tan,et al.  Study of the Molecular Recognition of Aptamers Selected through Ovarian Cancer Cell-SELEX , 2010, PloS one.

[96]  W. Tan,et al.  Aptamers: turning the spotlight on cells. , 2011, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[97]  Yoshikazu Nakamura,et al.  Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface. , 2006, Biochimie.

[98]  The kinetics of affinity-mediated cell-surface attachment. , 2000, Enzyme and microbial technology.

[99]  D. Gutsaeva,et al.  Inhibition of cell adhesion by anti-P-selectin aptamer: a new potential therapeutic agent for sickle cell disease. , 2011, Blood.

[100]  Hua Cui,et al.  Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. , 2005, Analytical chemistry.

[101]  N. Eberhardt,et al.  Clustering of the B cell receptor is not required for the apoptotic response. , 2003, DNA and cell biology.

[102]  Joshua E. Smith,et al.  Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. , 2008, Analytical chemistry.

[103]  D. Easton,et al.  Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. , 1995, American journal of human genetics.

[104]  Hui Chen,et al.  Molecular recognition of acute myeloid leukemia using aptamers , 2008, Leukemia.

[105]  Volker A Erdmann,et al.  Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. , 2004, Nucleic acids research.

[106]  M. Birrer,et al.  Validation of serum biomarkers for detection of early-stage ovarian cancer. , 2009, American journal of obstetrics and gynecology.

[107]  Gwendolyn M. Stovall,et al.  Technical and biological issues relevant to cell typing with aptamers. , 2009, Journal of proteome research.

[108]  Y. Jeong,et al.  Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. , 2011, Small.

[109]  K. Thompson,et al.  Pharmacokinetics and Biodistribution of Novel Aptamer Compositions , 2004, Pharmaceutical Research.

[110]  Rachel Ostroff,et al.  Aptamer-Based Multiplexed Proteomic Technology for Biomarker Discovery , 2010, PLoS ONE.

[111]  H. Schluesener,et al.  Systematic Evolution of a DNA Aptamer Binding to Rat Brain Tumor Microvessels , 2001, The Journal of Biological Chemistry.

[112]  D. Grimwade,et al.  Minimal residual disease evaluation in acute myeloid leukaemia , 2002, The Lancet.

[113]  Xiaohua Huang,et al.  Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. , 2006, Journal of the American Chemical Society.

[114]  R. Tompkins,et al.  Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[115]  Jie Li,et al.  Identification of an aptamer targeting hnRNP A1 by tissue slide‐based SELEX , 2009, The Journal of pathology.

[116]  Georges von Degenfeld,et al.  Noninvasive optical imaging of cysteine protease activity using fluorescently quenched activity-based probes. , 2007, Nature chemical biology.

[117]  K Okinaga,et al.  Detection of tumor cells in blood using CD45 magnetic cell separation followed by nested mutant allele‐specific amplification of p53 and K‐ras genes in patients with colorectal cancer , 2000, International journal of cancer.

[118]  Usha Menon,et al.  Progress and Challenges in Screening for Early Detection of Ovarian Cancer* , 2004, Molecular & Cellular Proteomics.

[119]  Joshua E. Smith,et al.  Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. , 2007, Analytical chemistry.

[120]  Xiao-lian Zhang,et al.  CS-SELEX Generates High-Affinity ssDNA Aptamers as Molecular Probes for Hepatitis C Virus Envelope Glycoprotein E2 , 2009, PloS one.

[121]  D. S. Coffey,et al.  Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. , 2002, Cancer research.

[122]  George Quick,et al.  Antidote-mediated control of an anticoagulant aptamer in vivo , 2004, Nature Biotechnology.

[123]  Weihong Tan,et al.  Locked nucleic acid molecular beacons. , 2005, Journal of the American Chemical Society.

[124]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[125]  J. Isola,et al.  Trastuzumab decreases the number of circulating and disseminated tumor cells despite trastuzumab resistance of the primary tumor. , 2008, Cancer letters.

[126]  R. Weissleder,et al.  In vivo imaging of tumors with protease-activated near-infrared fluorescent probes , 1999, Nature Biotechnology.

[127]  Patrick Hunziker,et al.  Screening cell surface receptors using micromosaic immunoassays , 2007, Biomedical microdevices.

[128]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[129]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[130]  J. Cambier,et al.  Membrane immunoglobulin and its accomplices: new lessons from an old receptor 1 , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[131]  P. Hartge Designing early detection programs for ovarian cancer. , 2010, Journal of the National Cancer Institute.

[132]  S. Digumarthy,et al.  Isolation of rare circulating tumour cells in cancer patients by microchip technology , 2007, Nature.

[133]  Marcelino Bernardo,et al.  An enzymatically activated fluorescence probe for targeted tumor imaging. , 2007, Journal of the American Chemical Society.

[134]  D. Bunka,et al.  Aptamers come of age – at last , 2006, Nature Reviews Microbiology.