Gas-phase reaction thermodynamics in preparation of pyrolytic carbon by propylene pyrolysis

[1]  G. A. Petersson,et al.  Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions , 1981 .

[2]  P. Walker,et al.  Pyrolysis of propylene over carbon active sites—I: Kinetics , 1985 .

[3]  G. A. Petersson,et al.  A complete basis set model chemistry. I. The total energies of closed‐shell atoms and hydrides of the first‐row elements , 1988 .

[4]  Philip L. Walker,et al.  Pyrolysis of propylene over carbon active sites II. Pyrolysis products , 1988 .

[5]  L. Curtiss,et al.  Gaussian‐1 theory: A general procedure for prediction of molecular energies , 1989 .

[6]  Krishnan Raghavachari,et al.  Gaussian‐1 theory of molecular energies for second‐row compounds , 1990 .

[7]  Krishnan Raghavachari,et al.  Gaussian-2 theory for molecular energies of first- and second-row compounds , 1991 .

[8]  R. Urdahl,et al.  An experimental determination of the heat of formation of C2 and the CH bond dissociation energy in C2H , 1991 .

[9]  G. A. Petersson,et al.  A complete basis set model chemistry. II. Open‐shell systems and the total energies of the first‐row atoms , 1991 .

[10]  G. A. Petersson,et al.  A complete basis set model chemistry. III. The complete basis set‐quadratic configuration interaction family of methods , 1991 .

[11]  John A. Montgomery,et al.  A complete basis set model chemistry. IV. An improved atomic pair natural orbital method , 1994 .

[12]  Stephen R. Langhoff,et al.  Quantum mechanical electronic structure calculations with chemical accuracy , 1995 .

[13]  D R Yarkony,et al.  Modern electronic structure theory , 1995 .

[14]  Pradeep K. Agrawal,et al.  1-D model for forced flow-thermal gradient chemical vapor infiltration process for carbon/carbon composites , 1996 .

[15]  John A. Montgomery,et al.  A complete basis set model chemistry. V. Extensions to six or more heavy atoms , 1996 .

[16]  Wing Tsang,et al.  Heats of Formation of Organic Free Radicals by Kinetic Methods , 1996 .

[17]  Pradeep K. Agrawal,et al.  Carbon/carbon processing by forced flow-thermal gradient chemical vapor infiltration using propylene , 1996 .

[18]  Leo Radom,et al.  Harmonic Vibrational Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors , 1996 .

[19]  J. Klonowski,et al.  Analysis of products of high-temperature pyrolysis of various hydrocarbons , 1997 .

[20]  T. K. and,et al.  Kinetics of C2 Reactions during High-Temperature Pyrolysis of Acetylene , 1997 .

[21]  L. Curtiss,et al.  Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation , 1997 .

[22]  A. Becker,et al.  Chemistry and kinetics of chemical vapor deposition of pyrocarbon — III pyrocarbon deposition from propylene and benzene in the low temperature regime , 1998 .

[23]  L. Curtiss,et al.  Gaussian-3 (G3) theory for molecules containing first and second-row atoms , 1998 .

[24]  Krishnan Raghavachari,et al.  Assessment of Gaussian-2 and density functional theories for the computation of ionization potentials and electron affinities , 1998 .

[25]  P. Thrower,et al.  Effects of the substrate on deposit structure and reactivity in the chemical vapor deposition of carbon , 1998 .

[26]  M. Allendorf,et al.  Understanding gas-phase reactions in the thermal CVD of hard coatings using computational methods , 1998 .

[27]  A. Becker,et al.  Chemistry and kinetics of chemical vapor deposition of pyrocarbon—II pyrocarbon deposition from ethylene, acetylene and 1,3-butadiene in the low temperature regime , 1998 .

[28]  Yongdong Xu,et al.  Carbon/silicon carbide composites prepared by chemical vapor infiltration combined with silicon melt infiltration , 1999 .

[29]  Krishnan Raghavachari,et al.  Gaussian-3 theory using reduced Mo/ller-Plesset order , 1999 .

[30]  G. A. Petersson,et al.  A complete basis set model chemistry. VI. Use of density functional geometries and frequencies , 1999 .

[31]  Shih-Chieh Lin,et al.  An analytical model for the temperature field in the laser forming of sheet metal , 2000 .

[32]  Wei Jun,et al.  Systematic Comparison of Geometry Optimization on Inorganic Molecules , 2000 .

[33]  Lai-fei Cheng,et al.  Composition, microstructure, and thermal stability of silicon carbide chemical vapor deposited at low temperatures , 2000 .

[34]  Wei Jun,et al.  High-level Ab Initio Energy Divergences between Theoretical Optimized and Experimental Geometries , 2000 .

[35]  P. Pacey,et al.  Formation of pyrolytic carbon during the pyrolysis of ethane at high conversions , 2001 .

[36]  Yongdong Xu,et al.  Effects of chemical vapor infiltration atmosphere on the mechanical properties and microstructure of carbon fibers , 2001 .

[37]  Xuejun Xu,et al.  Interactions between acetylene and carbon nanotubes at 893 and 1019 K , 2001 .

[38]  Yongdong Xu,et al.  Effect of carbon interlayer on oxidation behavior of C/SiC composites with a coating from room temperature to 1500°C , 2001 .

[39]  Walter Krenkel,et al.  High Temperature Ceramic Matrix Composites , 2002 .

[40]  Huang Bai-yun,et al.  Influence of the pore structure of carbon fibers on the oxidation resistance of C/C composites , 2002 .

[41]  Narayana Birakayala,et al.  A Reduced Reaction Model for Carbon Cvd/cvi Processes , 2002 .

[42]  K. J. Hüttinger,et al.  A commentary on: Formation of polycyclic aromatic hydrocarbons coincident with pyrolytic carbon deposition. Authors' reply , 2002 .

[43]  Yongdong Xu,et al.  Factorization Method for Failure Mechanism Analysis of C/C and C/SiC Composites , 2002 .

[44]  Klaus J. Hüttinger,et al.  Kinetics of surface reactions in carbon deposition from light hydrocarbons , 2003 .

[45]  Craig A. Taylor,et al.  Microstructural characterization of thin carbon films deposited from hydrocarbon mixtures , 2003 .

[46]  Nicolas Reuge,et al.  CVD and CVI of pyrocarbon from various precursors , 2004 .

[47]  Aijun Li,et al.  Numerical simulation of chemical vapor infiltration of propylene into C/C composites with reduced multi-step kinetic models , 2005 .

[48]  Xuhui Wang,et al.  Pore size control of Pitch-based activated carbon fibers by pyrolytic deposition of propylene , 2005 .

[49]  K. Norinaga,et al.  Analysis of gas phase compounds in chemical vapor deposition of carbon from light hydrocarbons , 2006 .

[50]  Qingfeng Zeng,et al.  Numerical simulation for fabrication of C/SiC composites in isothermal CVI reactor , 2006 .