Cobalt‐containing spherical glass nanoparticles for therapeutic ion release

[1]  Julian R. Jones,et al.  Bioactive glasses and electrospun composites that release cobalt to stimulate the HIF pathway for wound healing applications , 2021, Biomaterials Research.

[2]  Julian R. Jones,et al.  Biodegradable zinc-containing mesoporous silica nanoparticles for cancer therapy , 2020, Materials Today Advances.

[3]  Julian R. Jones,et al.  Effects of manganese incorporation on the morphology, structure and cytotoxicity of spherical bioactive glass nanoparticles. , 2019, Journal of colloid and interface science.

[4]  M. Houmard,et al.  Freeze-cast composite scaffolds prepared from sol-gel derived 58S bioactive glass and polycaprolactone , 2019, Ceramics International.

[5]  Julian R. Jones,et al.  Human mesenchymal stem cells differentiate into an osteogenic lineage in presence of strontium containing bioactive glass nanoparticles. , 2019, Acta biomaterialia.

[6]  H. Kim,et al.  Dual-ion delivery for synergistic angiogenesis and bactericidal capacity with silica-based microsphere. , 2019, Acta biomaterialia.

[7]  M. Caliari,et al.  Evaluation of in vitro and in vivo biocompatibility and structure of cobalt-releasing sol-gel bioactive glass , 2018, Ceramics International.

[8]  H. Kim,et al.  Mesoporous bioactive glasses: Promising platforms for antibacterial strategies. , 2018, Acta biomaterialia.

[9]  Julian R. Jones,et al.  The influence of cobalt incorporation and cobalt precursor selection on the structure and bioactivity of sol–gel-derived bioactive glass , 2018, Journal of Sol-Gel Science and Technology.

[10]  F. Baino Bioactive glasses – When glass science and technology meet regenerative medicine , 2018, Ceramics International.

[11]  W. Peukert,et al.  Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications , 2018, Journal of Materials Science: Materials in Medicine.

[12]  M. Stevens,et al.  Cobalt-containing bioactive glasses reduce human mesenchymal stem cell chondrogenic differentiation despite HIF-1α stabilisation , 2018, Journal of the European Ceramic Society.

[13]  Julian R. Jones,et al.  In vitro osteogenesis by intracellular uptake of strontium containing bioactive glass nanoparticles. , 2018, Acta biomaterialia.

[14]  Julian R. Jones,et al.  Phosphate content affects structure and bioactivity of sol‐gel silicate bioactive glasses , 2017 .

[15]  M. Mozafari,et al.  Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities. , 2017, Acta biomaterialia.

[16]  Huijun Zhu,et al.  In vitro evaluation of the internalization and toxicological profile of silica nanoparticles and submicroparticles for the design of dermal drug delivery strategies , 2017, Journal of applied toxicology : JAT.

[17]  Julian R. Jones,et al.  Sol–gel derived lithium-releasing glass for cartilage regeneration , 2017, Journal of biomaterials applications.

[18]  Livia Visai,et al.  POLITECNICO DI TORINO Repository ISTITUZIONALE Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration / , 2022 .

[19]  Dayang Wang,et al.  Unraveling the Growth Mechanism of Silica Particles in the Stöber Method: In Situ Seeded Growth Model. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[20]  Julian R. Jones,et al.  Lithium-silicate sol–gel bioactive glass and the effect of lithium precursor on structure–property relationships , 2016, Journal of Sol-Gel Science and Technology.

[21]  Julian R. Jones,et al.  Controlling particle size in the Stöber process and incorporation of calcium. , 2016, Journal of colloid and interface science.

[22]  Francesco Baino,et al.  Bioactive glasses: special applications outside the skeletal system , 2016 .

[23]  Julian R. Jones,et al.  Monodispersed strontium containing bioactive glass nanoparticles and MC3T3-E1 cellular response , 2016 .

[24]  Julian R. Jones,et al.  Bioactive Glasses: Frontiers and Challenges , 2015, Front. Bioeng. Biotechnol..

[25]  Gavin Jell,et al.  Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. , 2015, Biomaterials.

[26]  Aldo R Boccaccini,et al.  Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. , 2015, Acta biomaterialia.

[27]  Julian R. Jones,et al.  A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials. , 2015, Physical chemistry chemical physics : PCCP.

[28]  R. Burnap Systems and Photosystems: Cellular Limits of Autotrophic Productivity in Cyanobacteria , 2014, Front. Bioeng. Biotechnol..

[29]  Werner E. G. Müller,et al.  Effect of Bioglass on Growth and Biomineralization of SaOS-2 Cells in Hydrogel after 3D Cell Bioprinting , 2014, PloS one.

[30]  M. Wei,et al.  Synthesis and characterization of cobalt-substituted hydroxyapatite powders , 2014 .

[31]  M. Stevens,et al.  Cotton-wool-like bioactive glasses for bone regeneration. , 2014, Acta biomaterialia.

[32]  A. Boccaccini,et al.  Is non-buffered DMEM solution a suitable medium for in vitro bioactivity tests? , 2014, Journal of materials chemistry. B.

[33]  Nick C Fox,et al.  Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease , 2014, PLoS ONE.

[34]  W. Peukert,et al.  Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. , 2014, ACS applied materials & interfaces.

[35]  Yan Li,et al.  Influence of SiO2 on the structure-controlled synthesis and magnetic properties of prismatic MnO2 nanorods , 2013, Nanotechnology.

[36]  J. Nychka,et al.  Sol–Gel Synthesis of Bioactive Glass‐Ceramic 45S5 and its in vitro Dissolution and Mineralization Behavior , 2013 .

[37]  Julian R. Jones,et al.  Effect of calcium source on structure and properties of sol-gel derived bioactive glasses. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[38]  H. Kim,et al.  Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. , 2012, Nanoscale.

[39]  Chengtie Wu,et al.  Preparation, characterization and in vitro angiogenic capacity of cobalt substituted β-tricalcium phosphate ceramics , 2012 .

[40]  M. Vallet‐Regí,et al.  Structural and in vitro study of cerium, gallium and zinc containing sol–gel bioactive glasses , 2012 .

[41]  Wei Fan,et al.  Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. , 2012, Biomaterials.

[42]  Ashraf F. Ali,et al.  Fabrication and characterization of ZnO modified bioactive glass nanoparticles , 2012 .

[43]  J. Mano,et al.  Preparation and characterization of bioactive glass nanoparticles prepared by sol–gel for biomedical applications , 2011, Nanotechnology.

[44]  Raghu Raman Rajagopal,et al.  Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO(2)-P(2)O(5)-CaF(2) glasses. , 2011, Acta biomaterialia.

[45]  A. U. Daniels,et al.  Bioactive glass nanoparticles with negative zeta potential , 2011 .

[46]  Masoud Mozafari,et al.  Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds , 2010 .

[47]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[48]  G. Jell,et al.  Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration , 2010 .

[49]  C. Schmid,et al.  Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. , 2009, Acta biomaterialia.

[50]  B. Ratner,et al.  Differentiating calcium carbonate polymorphs by surface analysis techniques—an XPS and TOF‐SIMS study , 2008, Surface and interface analysis : SIA.

[51]  E. Fortunato,et al.  Sol–gel cobalt oxide–silica nanocomposite thin films for gas sensing applications , 2008 .

[52]  K. Dalby,et al.  Resolution of bridging oxygen signals from O 1s spectra of silicate glasses using XPS: Implications for O and Si speciation , 2007 .

[53]  D. Zukor,et al.  Effect of cobalt and chromium ions on human MG-63 osteoblasts in vitro: morphology, cytotoxicity, and oxidative stress. , 2006, Biomaterials.

[54]  J. Polak,et al.  Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[55]  M. Kacimi,et al.  Cobalt-exchanged hydroxyapatite catalysts: Magnetic studies, spectroscopic investigations, performance in 2-butanol and ethane oxidative dehydrogenations , 2004 .

[56]  M. Hupa,et al.  FTIR and XPS studies of bioactive silica based glasses , 2003 .

[57]  L. Hench,et al.  In vitro bioactivity of S520 glass fibers and initial assessment of osteoblast attachment. , 2003, Journal of biomedical materials research. Part A.

[58]  M. Salim,et al.  XPS study of transition metal doped silicate glasses , 1999 .

[59]  Atsushi Namiki,et al.  Hypoxia Induces Vascular Endothelial Growth Factor in Cultured Human Endothelial Cells (*) , 1995, The Journal of Biological Chemistry.

[60]  D. Muster,et al.  XPS study of some calcium compounds , 1995 .

[61]  D. W. Rice,et al.  Interpretation of the x-ray photoemission spectra of cobalt oxides and cobalt oxide surfaces , 1976 .

[62]  Larry L. Hench,et al.  Bonding mechanisms at the interface of ceramic prosthetic materials , 1971 .

[63]  H. Mansur,et al.  Thermogelling chitosan-collagen-bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. , 2016, Materials science & engineering. C, Materials for biological applications.

[64]  Julian R. Jones,et al.  Hypoxia inducible factor-stabilizing bioactive glasses for directing mesenchymal stem cell behavior. , 2015, Tissue engineering. Part A.

[65]  Julian R. Jones,et al.  Monodispersed Bioactive Glass Submicron Particles and Their Effect on Bone Marrow and Adipose Tissue‐Derived Stem Cells , 2014, Advanced healthcare materials.

[66]  H. Mansur,et al.  Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. , 2013, Biomedical materials.

[67]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[68]  K. Dalby,et al.  Bridging, non-bridging and free (O2–) oxygen in Na2O-SiO2 glasses: An X-ray Photoelectron Spectroscopic (XPS) and Nuclear Magnetic Resonance (NMR) study , 2011 .

[69]  C. Bianchi,et al.  Early stage reactivity and in vitro behavior of silica-based bioactive glasses and glass-ceramics , 2009, Journal of materials science. Materials in medicine.

[70]  W. Stöber,et al.  Controlled growth of monodisperse silica spheres in the micron size range , 1968 .