Magnetic Properties and Redox State of Impact Glasses: A Review and New Case Studies from Siberia

High velocity impacts produce melts that solidify as ejected or in-situ glasses. We provide a review of their peculiar magnetic properties, as well as a new detailed study of four glasses from Siberia: El’gygytgyn, Popigai, urengoites, and South-Ural glass (on a total of 24 different craters or strewn-fields). Two types of behavior appear: 1) purely paramagnetic with ferromagnetic impurities at most of the order of 10 ppm; this corresponds to the five tektite strewn-fields (including the new one from Belize), urengoites, and Darwin glass. Oxidation state, based in particular on X-ray spectroscopy, is mostly restricted to Fe2+; 2) variable and up to strong ferromagnetic component, up to the 1 wt % range, mostly due to substituted magnetite often in superparamagnetic state. Accordingly, bulk oxidation state is intermediate between Fe2+ and Fe3+, although metallic iron, hematite, and pyrrhotite are sometimes encountered. Various applications of these magnetic properties are reviewed in the field of paleomagnetism, magnetic anomalies, recognition of glass origin, and formation processes.

[1]  A. Guda,et al.  Iron oxidation state of impact glasses from the Zhamanshin crater studied by X-ray absorption spectroscopy , 2020 .

[2]  F. d’Acapito,et al.  The LISA beamline at ESRF. , 2019, Journal of synchrotron radiation.

[3]  G. Osinski,et al.  Pantasma: Evidence for a Pleistocene circa 14 km diameter impact crater in Nicaragua , 2019, Meteoritics & Planetary Science.

[4]  F. d’Acapito,et al.  The New Beamline LISA at ESRF: Performances and Perspectives for Earth and Environmental Sciences , 2019, Condensed Matter.

[5]  V. Masaitis Popigai Impact Structure and its Diamond-Bearing Rocks , 2019, Impact Studies.

[6]  P. Rochette,et al.  FRIGN zircon—The only terrestrial mineral diagnostic of high-pressure and high-temperature shock deformation , 2018, Geology.

[7]  A. Sakhatskii,et al.  Magnetic Properties of Tektite-like Impact Glasses from Zhamanshin Astrobleme, Kazakhstan , 2018, Springer Geophysics.

[8]  D. Bourlès,et al.  10Be in Australasian microtektites compared to tektites: Size and geographic controls , 2018, Geology.

[9]  M. Eitel,et al.  Magnetic Signatures of Terrestrial Meteorite Impact Craters: A Summary , 2018 .

[10]  A. Kosterov,et al.  Two types of impact melts with contrasting magnetic mineralogy from Jänisjärvi impact structure, Russian Karelia , 2017 .

[11]  P. Beck,et al.  Surface vitrification caused by natural fires in Late Pleistocene wetlands of the Atacama Desert , 2017 .

[12]  Huifang Xu,et al.  Luogufengite: A new nano-mineral of Fe2O3 polymorph with giant coercive field , 2017 .

[13]  B. Glass Glass: The Geologic Connection , 2016 .

[14]  V. Mameli,et al.  Much More Than a Glass: The Complex Magnetic and Microstructural Properties of Obsidian , 2016 .

[15]  L. Folco,et al.  Target-projectile interaction during impact melting at Kamil Crater, Egypt , 2016 .

[16]  P. Rochette,et al.  Magnetic properties of tektites and other related impact glasses , 2015 .

[17]  G. Osinski,et al.  Paleomagnetic and rock magnetic study of the Mistastin Lake impact structure (Labrador, Canada): Implications for geomagnetic perturbation and shock effects , 2015 .

[18]  A. Trapananti,et al.  NEW DATA ON THE Fe OXIDATION STATE AND WATER CONTENT OF BELIZE , 2014 .

[19]  G. Pratesi,et al.  Amorphous Materials: Properties, structure, and durability. North American microtektites are more oxidized than tektites , 2013 .

[20]  C. Koeberl,et al.  Petrography of impact glasses and melt breccias from the El'gygytgyn impact structure, Russia , 2013 .

[21]  Alex R. Knodell,et al.  Geoarchaeology of Ancient Aulis (Boeotia, Central Greece): human occupation and Holocene landscape changes , 2013 .

[22]  Matthias Ebert,et al.  Chemical projectile–target interaction and liquid immiscibility in impact glass from the Wabar craters, Saudi Arabia , 2012 .

[23]  G. Osinski,et al.  Origin of the central magnetic anomaly at the Haughton impact structure, Canada , 2011 .

[24]  D. Dingwell,et al.  XAS determination of the Fe local environment and oxidation state in phonolite glasses , 2011 .

[25]  P. Rochette,et al.  Constraining the terrestrial age of micrometeorites using their record of the Earth's magnetic field polarity , 2011 .

[26]  S. Stewart,et al.  Paleomagnetism of impact spherules from Lonar crater, India and a test for impact-generated fields , 2010 .

[27]  G. Pratesi,et al.  Iron oxidation state and local structure in North American tektites , 2010 .

[28]  G. Pratesi,et al.  Iron reduction in silicate glass produced during the 1945 nuclear test at the Trinity site (Alamogordo, New Mexico, USA) , 2010 .

[29]  D. Sengupta,et al.  Geochemical identification of impactor for Lonar crater, India , 2009 .

[30]  M. Tiepolo,et al.  Microtektites from Victoria Land Transantarctic Mountains , 2008 .

[31]  R. Dunlap,et al.  A Mössbauer effect study of Fe environments in impact glasses , 2007 .

[32]  A. Kontny,et al.  Petrophysical and paleomagnetic data of drill cores from the Bosumtwi impact structure, Ghana , 2007 .

[33]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[34]  M. Funaki,et al.  Matching Martian crustal magnetization and magnetic properties of Martian meteorites , 2005 .

[35]  C. Koeberl,et al.  Shocked rocks and impact glasses from the El'gygytgyn impact structure, Russia , 2004 .

[36]  G. Pratesi,et al.  Iron oxidation state in the Fe‐rich layer and silica matrix of Libyan Desert Glass: A high‐resolution XANES study , 2003 .

[37]  J. Wasson,et al.  Large aerial bursts: an important class of terrestrial accretionary events. , 2001, Astrobiology.

[38]  G. Pratesi,et al.  Iron local structure in tektites and impact glasses by extended X-ray absorption fine structure and high-resolution X-ray absorption near-edge structure spectroscopy , 2002 .

[39]  R. Grieve,et al.  Mineralogy and petrology of melt rocks from the Popigai impact structure, Siberia , 2002 .

[40]  B. Dressler,et al.  Terrestrial impact melt rocks and glasses , 2001 .

[41]  P. Petit,et al.  Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study , 2001 .

[42]  A. Hildebrand,et al.  Magnetic measurements of glass from Tikal, Guatemala: Possible tektites , 2000 .

[43]  L. Pesonen,et al.  The Bosumtwi meteorite impact structure, Ghana: A magnetic model , 2000 .

[44]  V. Masaitis Impact structures of northeastern Eurasia: The territories of Russia and adjacent countries , 1999 .

[45]  G. Borradaile,et al.  Homogeneous magnetic susceptibilities of tektites: Implications for extreme homogenization of source material , 1998 .

[46]  V. Masaitis,et al.  Geochemistry and neodymium‐strontium isotope signature of tektite‐like objects from Siberia (urengoites, South‐Ural glass) , 1997 .

[47]  A. Beran,et al.  Water in tektites and impact glasses by fourier‐transformed infrared spectrometry , 1997 .

[48]  C. Koeberl,et al.  A Muong Nong-type Georgia tektite , 1995 .

[49]  L. Pesonen,et al.  Palaeomagnetism of the Lappajärvi impact structure, western Finland , 1992 .

[50]  Mark Pilkington,et al.  The geophysical signature of terrestrial impact craters , 1992 .

[51]  B. Glass Tektites and microtektites: key facts and inferences , 1990 .

[52]  M. A. Ivanov,et al.  Finds of Tektite Glasses in West Siberia , 1988 .

[53]  D. Fisher,et al.  Lightning Strike Fusion: Extreme Reduction and Metal-Silicate Liquid Immiscibility , 1986, Science.

[54]  J. Larimer,et al.  Nickel-iron spherules in tektites: non-meteoritic in origin , 1983 .

[55]  P. Eisenberger,et al.  Extended x-ray absorption fine structure—its strengths and limitations as a structural tool , 1981 .

[56]  D. Brownlee,et al.  Metal spherules in Wabar, Monturaqui, and Henbury impactites. [iron meteorites] , 1976 .

[57]  W. Cassidy,et al.  Natural remanent magnetism of tektites of the Muong-Nong type and its bearing on models of their origin , 1975 .

[58]  F. Senftle,et al.  Magnetic properties of microtektites , 1969 .

[59]  B. Kleinmann Magnetite bearing spherules in tektites , 1969 .

[60]  E. Dwornik,et al.  Nickel-Iron Spherules from Aouelioul Glass , 1966, Science.

[61]  E. Dwornik,et al.  New data on the nickel-iron spherules from Southeast Asian tektites and their implications , 1964 .

[62]  F. Senftle,et al.  Magnetic susceptibility of tektites and some other glasses , 1959 .

[63]  A. Sigamony The magnetic behaviour of a tektite , 1944 .