Magnetic Properties and Redox State of Impact Glasses: A Review and New Case Studies from Siberia
暂无分享,去创建一个
P. Beck | P. Rochette | J. Gattacceca | G. Giuli | V. Masaitis | A. Kosterov | D. Badyukov | Natalia S. Bezaeva | G. O. Lepore
[1] A. Guda,et al. Iron oxidation state of impact glasses from the Zhamanshin crater studied by X-ray absorption spectroscopy , 2020 .
[2] F. d’Acapito,et al. The LISA beamline at ESRF. , 2019, Journal of synchrotron radiation.
[3] G. Osinski,et al. Pantasma: Evidence for a Pleistocene circa 14 km diameter impact crater in Nicaragua , 2019, Meteoritics & Planetary Science.
[4] F. d’Acapito,et al. The New Beamline LISA at ESRF: Performances and Perspectives for Earth and Environmental Sciences , 2019, Condensed Matter.
[5] V. Masaitis. Popigai Impact Structure and its Diamond-Bearing Rocks , 2019, Impact Studies.
[6] P. Rochette,et al. FRIGN zircon—The only terrestrial mineral diagnostic of high-pressure and high-temperature shock deformation , 2018, Geology.
[7] A. Sakhatskii,et al. Magnetic Properties of Tektite-like Impact Glasses from Zhamanshin Astrobleme, Kazakhstan , 2018, Springer Geophysics.
[8] D. Bourlès,et al. 10Be in Australasian microtektites compared to tektites: Size and geographic controls , 2018, Geology.
[9] M. Eitel,et al. Magnetic Signatures of Terrestrial Meteorite Impact Craters: A Summary , 2018 .
[10] A. Kosterov,et al. Two types of impact melts with contrasting magnetic mineralogy from Jänisjärvi impact structure, Russian Karelia , 2017 .
[11] P. Beck,et al. Surface vitrification caused by natural fires in Late Pleistocene wetlands of the Atacama Desert , 2017 .
[12] Huifang Xu,et al. Luogufengite: A new nano-mineral of Fe2O3 polymorph with giant coercive field , 2017 .
[13] B. Glass. Glass: The Geologic Connection , 2016 .
[14] V. Mameli,et al. Much More Than a Glass: The Complex Magnetic and Microstructural Properties of Obsidian , 2016 .
[15] L. Folco,et al. Target-projectile interaction during impact melting at Kamil Crater, Egypt , 2016 .
[16] P. Rochette,et al. Magnetic properties of tektites and other related impact glasses , 2015 .
[17] G. Osinski,et al. Paleomagnetic and rock magnetic study of the Mistastin Lake impact structure (Labrador, Canada): Implications for geomagnetic perturbation and shock effects , 2015 .
[18] A. Trapananti,et al. NEW DATA ON THE Fe OXIDATION STATE AND WATER CONTENT OF BELIZE , 2014 .
[19] G. Pratesi,et al. Amorphous Materials: Properties, structure, and durability. North American microtektites are more oxidized than tektites , 2013 .
[20] C. Koeberl,et al. Petrography of impact glasses and melt breccias from the El'gygytgyn impact structure, Russia , 2013 .
[21] Alex R. Knodell,et al. Geoarchaeology of Ancient Aulis (Boeotia, Central Greece): human occupation and Holocene landscape changes , 2013 .
[22] Matthias Ebert,et al. Chemical projectile–target interaction and liquid immiscibility in impact glass from the Wabar craters, Saudi Arabia , 2012 .
[23] G. Osinski,et al. Origin of the central magnetic anomaly at the Haughton impact structure, Canada , 2011 .
[24] D. Dingwell,et al. XAS determination of the Fe local environment and oxidation state in phonolite glasses , 2011 .
[25] P. Rochette,et al. Constraining the terrestrial age of micrometeorites using their record of the Earth's magnetic field polarity , 2011 .
[26] S. Stewart,et al. Paleomagnetism of impact spherules from Lonar crater, India and a test for impact-generated fields , 2010 .
[27] G. Pratesi,et al. Iron oxidation state and local structure in North American tektites , 2010 .
[28] G. Pratesi,et al. Iron reduction in silicate glass produced during the 1945 nuclear test at the Trinity site (Alamogordo, New Mexico, USA) , 2010 .
[29] D. Sengupta,et al. Geochemical identification of impactor for Lonar crater, India , 2009 .
[30] M. Tiepolo,et al. Microtektites from Victoria Land Transantarctic Mountains , 2008 .
[31] R. Dunlap,et al. A Mössbauer effect study of Fe environments in impact glasses , 2007 .
[32] A. Kontny,et al. Petrophysical and paleomagnetic data of drill cores from the Bosumtwi impact structure, Ghana , 2007 .
[33] M Newville,et al. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.
[34] M. Funaki,et al. Matching Martian crustal magnetization and magnetic properties of Martian meteorites , 2005 .
[35] C. Koeberl,et al. Shocked rocks and impact glasses from the El'gygytgyn impact structure, Russia , 2004 .
[36] G. Pratesi,et al. Iron oxidation state in the Fe‐rich layer and silica matrix of Libyan Desert Glass: A high‐resolution XANES study , 2003 .
[37] J. Wasson,et al. Large aerial bursts: an important class of terrestrial accretionary events. , 2001, Astrobiology.
[38] G. Pratesi,et al. Iron local structure in tektites and impact glasses by extended X-ray absorption fine structure and high-resolution X-ray absorption near-edge structure spectroscopy , 2002 .
[39] R. Grieve,et al. Mineralogy and petrology of melt rocks from the Popigai impact structure, Siberia , 2002 .
[40] B. Dressler,et al. Terrestrial impact melt rocks and glasses , 2001 .
[41] P. Petit,et al. Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study , 2001 .
[42] A. Hildebrand,et al. Magnetic measurements of glass from Tikal, Guatemala: Possible tektites , 2000 .
[43] L. Pesonen,et al. The Bosumtwi meteorite impact structure, Ghana: A magnetic model , 2000 .
[44] V. Masaitis. Impact structures of northeastern Eurasia: The territories of Russia and adjacent countries , 1999 .
[45] G. Borradaile,et al. Homogeneous magnetic susceptibilities of tektites: Implications for extreme homogenization of source material , 1998 .
[46] V. Masaitis,et al. Geochemistry and neodymium‐strontium isotope signature of tektite‐like objects from Siberia (urengoites, South‐Ural glass) , 1997 .
[47] A. Beran,et al. Water in tektites and impact glasses by fourier‐transformed infrared spectrometry , 1997 .
[48] C. Koeberl,et al. A Muong Nong-type Georgia tektite , 1995 .
[49] L. Pesonen,et al. Palaeomagnetism of the Lappajärvi impact structure, western Finland , 1992 .
[50] Mark Pilkington,et al. The geophysical signature of terrestrial impact craters , 1992 .
[51] B. Glass. Tektites and microtektites: key facts and inferences , 1990 .
[52] M. A. Ivanov,et al. Finds of Tektite Glasses in West Siberia , 1988 .
[53] D. Fisher,et al. Lightning Strike Fusion: Extreme Reduction and Metal-Silicate Liquid Immiscibility , 1986, Science.
[54] J. Larimer,et al. Nickel-iron spherules in tektites: non-meteoritic in origin , 1983 .
[55] P. Eisenberger,et al. Extended x-ray absorption fine structure—its strengths and limitations as a structural tool , 1981 .
[56] D. Brownlee,et al. Metal spherules in Wabar, Monturaqui, and Henbury impactites. [iron meteorites] , 1976 .
[57] W. Cassidy,et al. Natural remanent magnetism of tektites of the Muong-Nong type and its bearing on models of their origin , 1975 .
[58] F. Senftle,et al. Magnetic properties of microtektites , 1969 .
[59] B. Kleinmann. Magnetite bearing spherules in tektites , 1969 .
[60] E. Dwornik,et al. Nickel-Iron Spherules from Aouelioul Glass , 1966, Science.
[61] E. Dwornik,et al. New data on the nickel-iron spherules from Southeast Asian tektites and their implications , 1964 .
[62] F. Senftle,et al. Magnetic susceptibility of tektites and some other glasses , 1959 .
[63] A. Sigamony. The magnetic behaviour of a tektite , 1944 .