Information and disturbance in operational probabilistic theories
暂无分享,去创建一个
Giacomo Mauro D'Ariano | Paolo Perinotti | Alessandro Tosini | G. D’Ariano | P. Perinotti | A. Tosini
[1] Giacomo Mauro D'Ariano,et al. Classical theories with entanglement , 2020 .
[2] R. Werner,et al. Colloquium: Quantum root-mean-square error and measurement uncertainty relations , 2013, 1312.4393.
[3] D. Gross,et al. All reversible dynamics in maximally nonlocal theories are trivial. , 2009, Physical review letters.
[4] Maribel Fernández,et al. Electronic Notes in Theoretical Computer Science , 2016 .
[5] Giacomo Mauro D'Ariano,et al. Testing axioms for quantum theory on probabilistic toy-theories , 2009, Quantum Inf. Process..
[6] Ryuji Takagi,et al. General Resource Theories in Quantum Mechanics and Beyond: Operational Characterization via Discrimination Tasks , 2019, Physical Review X.
[7] G. D’Ariano,et al. Probabilistic theories with purification , 2009, 0908.1583.
[8] Giulio Chiribella,et al. Quantum from principles , 2015, ArXiv.
[9] A. J. Short,et al. Strong nonlocality: a trade-off between states and measurements , 2009, 0909.2601.
[10] Giulio Chiribella,et al. Quantum Theory from First Principles - An Informational Approach , 2017 .
[11] P. Busch,et al. Heisenberg's uncertainty principle , 2006, quant-ph/0609185.
[12] Teiko Heinosaari,et al. No-free-information principle in general probabilistic theories , 2018, Quantum.
[13] Hideki Imai,et al. Distinguishability measures and entropies for general probabilistic theories , 2009, 0910.0994.
[14] Michele Dall'Arno,et al. No-Hypersignaling Principle. , 2016, Physical review letters.
[15] Stephanie Wehner,et al. An information-theoretic principle implies that any discrete physical theory is classical , 2013, Nature Communications.
[16] Paul Busch,et al. "No Information Without Disturbance": Quantum Limitations of Measurement , 2007, 0706.3526.
[17] Masanao Ozawa. Uncertainty relations for noise and disturbance in generalized quantum measurements , 2003 .
[18] Giacomo Mauro D'Ariano,et al. The Feynman problem and Fermionic entanglement: Fermionic theory versus qubit theory , 2014, 1403.2674.
[19] Robert W. Spekkens,et al. A mathematical theory of resources , 2014, Inf. Comput..
[20] William K. Wootters,et al. Limited Holism and Real-Vector-Space Quantum Theory , 2010, 1005.4870.
[21] A. J. Short,et al. Reversible dynamics in strongly non-local Boxworld systems , 2013, 1312.3931.
[22] Giacomo Mauro D'Ariano,et al. Fermionic computation is non-local tomographic and violates monogamy of entanglement , 2013, 1307.7902.
[23] Isaac L. Chuang,et al. Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .
[24] S. Popescu,et al. Quantum nonlocality as an axiom , 1994 .
[25] Howard Barnum,et al. Information Processing in Convex Operational Theories , 2009, QPL/DCM@ICALP.
[26] G. D’Ariano,et al. Informational derivation of quantum theory , 2010, 1011.6451.
[27] Paolo Perinotti,et al. Determinism without causality , 2013, 1301.7578.
[28] A. Kitaev,et al. Fermionic Quantum Computation , 2000, quant-ph/0003137.
[29] Jonathan Barrett. Information processing in generalized probabilistic theories , 2005 .
[30] Pérès,et al. Quantum-state disturbance versus information gain: Uncertainty relations for quantum information. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[31] Giacomo Mauro D'Ariano,et al. On the Heisenberg principle, namely on the information‐disturbance trade‐off in a quantum measurement , 2002, quant-ph/0208110.
[32] Lorenzo Maccone. Information-disturbance tradeoff in quantum measurements , 2006 .
[33] S. Massar,et al. Nonlocal correlations as an information-theoretic resource , 2004, quant-ph/0404097.
[34] G. D’Ariano,et al. Classicality without local discriminability: Decoupling entanglement and complementarity , 2020, Physical Review A.
[35] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .