Immunohistochemical localization of mesenchymal stem cells in ossified human spinal ligaments.

[1]  S. Yagihashi,et al.  Mesenchymal stem cell isolation and characterization from human spinal ligaments. , 2012, Biochemical and biophysical research communications.

[2]  V. Bautch,et al.  Stem cells and the vasculature , 2011, Nature Medicine.

[3]  H. Baba,et al.  Ossification process involving the human thoracic ligamentum flavum: role of transcription factors , 2011, Arthritis research & therapy.

[4]  Chien-Lin Liu,et al.  Isolation of Mesenchymal Stem Cells From Human Ligamentum Flavum: Implicating Etiology of Ligamentum Flavum Hypertrophy , 2011, Spine.

[5]  P. Lui,et al.  Does erroneous differentiation of tendon-derived stem cells contribute to the pathogenesis of calcifying tendinopathy? , 2011, Chinese medical journal.

[6]  Y. Rui,et al.  Expression of chondro‐osteogenic BMPs in ossified failed tendon healing model of tendinopathy , 2011, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[7]  F. Jakob,et al.  Mesenchymal stem cell characteristics of human anterior cruciate ligament outgrowth cells. , 2011, Tissue engineering. Part A.

[8]  Kai-Ming Chan,et al.  Mechanical loading increased BMP‐2 expression which promoted osteogenic differentiation of tendon‐derived stem cells , 2011, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[9]  I. Sekiya,et al.  Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles , 2009, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[10]  Andrew D. A. Maidment,et al.  Identification of progenitor cells that contribute to heterotopic skeletogenesis. , 2009, The Journal of bone and joint surgery. American volume.

[11]  Arnold I Caplan,et al.  All MSCs are pericytes? , 2008, Cell stem cell.

[12]  S. Badylak,et al.  A perivascular origin for mesenchymal stem cells in multiple human organs. , 2008, Cell stem cell.

[13]  N. Nardi,et al.  In Search of the In Vivo Identity of Mesenchymal Stem Cells , 2008, Stem cells.

[14]  K. Furukawa Pharmacological aspect of ectopic ossification in spinal ligament tissues. , 2008, Pharmacology & therapeutics.

[15]  L. Dai,et al.  Hormones and growth factors in the pathogenesis of spinal ligament ossification , 2007, European Spine Journal.

[16]  S. Toh,et al.  Pathophysiological Role of Endothelin in Ectopic Ossification of Human Spinal Ligaments Induced by Mechanical Stress , 2006, Calcified Tissue International.

[17]  Y. Hashizume,et al.  Immunohistochemistry of symptomatic hypertrophy of the posterior longitudinal ligament with special reference to ligamentous ossification , 2006, Spinal Cord.

[18]  A. Canfield,et al.  Angiogenesis and pericytes in the initiation of ectopic calcification. , 2005, Circulation research.

[19]  Edward C. Benzel,et al.  Biomechanics of the Spine , 2005 .

[20]  T. Kusumi,et al.  Uni-axial Cyclic Stretch Induces Cbfa1 Expression in Spinal Ligament Cells Derived from Patients with Ossification of the Posterior Longitudinal Ligament , 2004, Calcified Tissue International.

[21]  Toshihiro Tanaka,et al.  Genomewide linkage and linkage disequilibrium analyses identify COL6A1, on chromosome 21, as the locus for ossification of the posterior longitudinal ligament of the spine. , 2003, American journal of human genetics.

[22]  S. Harata,et al.  Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. , 2003, Bone.

[23]  S. Toh,et al.  Role of Prostaglandin I2 in the Gene Expression Induced by Mechanical Stress in Spinal Ligament Cells Derived from Patients with Ossification of the Posterior Longitudinal Ligament , 2003, Journal of Pharmacology and Experimental Therapeutics.

[24]  M. Takigawa,et al.  Possible Roles of CTGF/Hcs24 in the Initiation and Development of Ossification of the Posterior Longitudinal Ligament , 2002, Spine.

[25]  M. Saito,et al.  Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. , 2002, Osteoarthritis and cartilage.

[26]  F. Luyten,et al.  Multipotent mesenchymal stem cells from adult human synovial membrane. , 2001, Arthritis and rheumatism.

[27]  M. Pittenger,et al.  Multilineage potential of adult human mesenchymal stem cells. , 1999, Science.

[28]  D. Prockop Marrow Stromal Cells as Stem Cells for Nonhematopoietic Tissues , 1997, Science.

[29]  Augustus A. White,et al.  The Anatomy of the Human Lumbar Ligamentum Flavum: New Observations and Their Surgical Importance , 1996, Spine.

[30]  S. Toh,et al.  A functional RNAi screen for Runx2-regulated genes associated with ectopic bone formation in human spinal ligaments. , 2008, Journal of pharmacological sciences.

[31]  K. Furukawa Current topics in pharmacological research on bone metabolism: molecular basis of ectopic bone formation induced by mechanical stress. , 2006, Journal of pharmacological sciences.

[32]  D. Prockop,et al.  Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. , 2006, Cytotherapy.

[33]  K. Terayama,et al.  A radiological population study on the ossification of the posterior longitudinal ligament in the spine , 2004, Archives of orthopaedic and traumatic surgery.

[34]  L. Aulisa,et al.  Biomechanics of the Spine , 2019, Atlas of Orthoses and Assistive Devices.