Weak convergence of the tail empirical process for dependent sequences

This paper proves weak convergence in D of the tail empirical process-the renormalized extreme tail of the empirical process-for a large class of stationary sequences. The conditions needed for convergence are (i) moment restrictions on the amount of clustering of extremes, (ii) restrictions on long range dependence (absolute regularity or strong mixing), and (iii) convergence of the covariance function. We further show how the limit process is changed if exceedances of a nonrandom level are replaced by exceedances of a high quantile of the observations. Weak convergence of the tail empirical process is one key to asymptotics for extreme value statistics and its wide range of applications, from geoscience to finance.

[1]  H. Berbee,et al.  Convergence rates in the strong law for bounded mixing sequences , 1984 .

[2]  R. C. Bradley Basic properties of strong mixing conditions. A survey and some open questions , 2005, math/0511078.

[3]  R. C. Bradley Basic Properties of Strong Mixing Conditions , 1985 .

[4]  S. Resnick,et al.  Tail Index Estimation for Dependent Data , 1998 .

[5]  E. Rio,et al.  Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .

[6]  H. Drees Tail Empirical Processes Under Mixing Conditions , 2002 .

[7]  D. Mason,et al.  Nonstandard Functional Laws of the Iterated Logarithm for Tail Empirical and Quantile Processes , 1990 .

[8]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[9]  E. Eberlein Weak convergence of partial sums of absolutely regular sequences , 1984 .

[10]  S. Resnick,et al.  Consistency of Hill's estimator for dependent data , 1995, Journal of Applied Probability.

[11]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[12]  D. Mason,et al.  Weighted Empirical and Quantile Processes , 1986 .

[13]  Eric P. Smith,et al.  An Introduction to Statistical Modeling of Extreme Values , 2002, Technometrics.

[14]  P. Massart,et al.  Invariance principles for absolutely regular empirical processes , 1995 .

[15]  Alexandr A. Borovkov,et al.  Limit Theorems of Probability Theory. , 2011 .

[16]  J. Kingman,et al.  Random walks with stationary increments and renewal theory , 1979 .

[17]  Jérôme Dedecker,et al.  A new covariance inequality and applications , 2003 .

[18]  Holger Drees,et al.  Extreme quantile estimation for dependent data with applications to finance , 2003 .

[19]  R. Syski,et al.  Random Walks With Stationary Increments and Renewal Theory , 1982 .

[20]  Herold Dehling,et al.  Empirical Process Techniques for Dependent Data , 2002 .

[21]  S. Resnick,et al.  Asymptotic behavior of hill's estimator for autoregressive data , 1997 .

[22]  Weighted approximations of tail processes for $\beta$-mixing random variables , 2001 .

[23]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[24]  J. Einmahl Limit theorems for tail processes with application to intermediate quantile estimation , 1992 .

[25]  Ward Whitt,et al.  Some Useful Functions for Functional Limit Theorems , 1980, Math. Oper. Res..

[26]  J. Dedecker,et al.  New dependence coefficients. Examples and applications to statistics , 2005 .

[27]  W. Vervaat Functional central limit theorems for processes with positive drift and their inverses , 1972 .

[28]  P. Doukhan,et al.  A new weak dependence condition and applications to moment inequalities , 1999 .

[29]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[30]  Tailen Hsing,et al.  On Tail Index Estimation Using Dependent Data , 1991 .

[31]  Magda Peligrad,et al.  Recent advances in invariance principles for stationary sequences , 2006, math/0601315.

[32]  M. R. Leadbetter,et al.  On the distribution of tail array sums for strongly mixing stationary sequences , 1998 .

[33]  Anthony C. Davison,et al.  Statistics of Extremes , 2015, International Encyclopedia of Statistical Science.

[34]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[35]  Eric Gilleland,et al.  Software for the analysis of extreme events: The current state and future directions , 2005 .

[36]  Serguei Novak,et al.  Inference on heavy tails from dependent data , 1999 .

[37]  Rolf-Dieter Reiss,et al.  Statistical analysis of extreme values : from insurance, finance, hydrology and other fields , 1998 .

[38]  V. Volkonskii,et al.  Some Limit Theorems for Random Functions. II , 1959 .

[39]  H. Rootzén The tail empirical process for stationary sequences , 1995 .

[40]  S. Nadarajah,et al.  Extreme Value Distributions: Theory and Applications , 2000 .

[41]  V. Statulevičius,et al.  Limit Theorems of Probability Theory , 2000 .

[42]  Holger Drees,et al.  On Smooth Statistical Tail Functionals , 1998 .

[43]  M. A. Arcones,et al.  Central limit theorems for empirical andU-processes of stationary mixing sequences , 1994 .

[44]  J. Einmahl The empirical distribution function as a tail estimator. , 1990 .

[45]  Q. Shao,et al.  Weak convergence for weighted empirical processes of dependent sequences , 1996 .

[46]  Inference for the Tail Parameters of a Linear Process with Heavy Tail Innovations , 1998 .

[47]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .