Population distribution modelling at fine spatio-temporal scale based on mobile phone data

ABSTRACT Population distribution modelling can benefit many different domains, for example, transportation, urban planning, ecology or emergency management. Information about the location and number of people in an affected area is crucial for decision-makers during emergencies and crises. Mobile phone data represents relatively reliable and time accurate information on real-time population distribution, movement and behaviour. In this study, we evaluate the spatio-temporal distribution of population derived from phone data of the selected pilot area (City of Brno, Czech Republic). Analysis is based on the dataset describing the estimated human presence (EHP) with two values – visitors and transiting persons. The temporal change of data is first analysed and further processed using two methodological approaches. First, the dasymetric method is used where the building geometry and technical attributes served as a target layer. Second, the results of building level analysis are transformed into a regular grid zone of both visitors and the general EHP. Resulting spatio-temporal patterns are compared to the census data. Results demonstrate how the proposed building level dasymetric approach can improve the spatial granularity of EHP. Potential use of proposed methodology within selected emergency situations is further discussed.

[1]  Ondřej Mulíček,et al.  Prague: Urban Growth and Regional Sprawl , 2014 .

[2]  Lukáš Herman,et al.  Visualization and spatial analysis of open data for evacuation planning – pilot study of the Dukovany nuclear power plant (Czech Republic) , 2017 .

[3]  Olle Järv,et al.  Enhancing spatial accuracy of mobile phone data using multi-temporal dasymetric interpolation , 2017, Int. J. Geogr. Inf. Sci..

[4]  Tomáš Řezník,et al.  Emergency Support System: Actionable Real-time Intelligence with Fusion Capabilities and Cartographic Displays , 2011 .

[5]  Wei Tu,et al.  Activity Sequence-Based Indoor Pedestrian Localization Using Smartphones , 2015, IEEE Transactions on Human-Machine Systems.

[6]  Wolfgang Reinhardt,et al.  Early warning and disaster management: the importance of geographic information (Part A) , 2010, Int. J. Digit. Earth.

[7]  Nigel Waters,et al.  Fusing non-authoritative data to improve situational awareness in emergencies , 2014, ISCRAM.

[8]  R. Ahas,et al.  The Seasonal Variability of Population in Estonian Municipalities , 2010 .

[9]  X Zhou Spatial Analysis of Dynamic Data - Identifying City Center , 2014 .

[10]  Javier Gallego,et al.  A high-resolution population grid map for Europe , 2013 .

[11]  Roman Szturc,et al.  Advanced methods of cell phone localization for crisis and emergency management applications , 2015, Int. J. Digit. Earth.

[12]  Heikki Hämmäinen,et al.  A handset‐based platform for measuring mobile service usage , 2007 .

[13]  Radim Lískovec,et al.  Výzkum časoprostorových rytmů prostřednictvím geolokalizačních technologií , 2016 .

[14]  David J. Martin,et al.  Developing a Flexible Framework for Spatiotemporal Population Modeling , 2015 .

[15]  Yihong Yuan,et al.  Analyzing and geo-visualizing individual human mobility patterns using mobile call records , 2010, 2010 18th International Conference on Geoinformatics.

[16]  Martin Raubal,et al.  Correlating mobile phone usage and travel behavior - A case study of Harbin, China , 2012, Comput. Environ. Urban Syst..

[17]  Yu Liu,et al.  Towards Estimating Urban Population Distributions from Mobile Call Data , 2012 .

[18]  加藤 邦男,et al.  Reference data , 2018, Main Economic Indicators.

[19]  Xu Jinle,et al.  The Spatio-temporal Heterogeneity Analysis of Massive Urban Mobile Phone Users' Stay Behavior: A Case Study of Shenzhen City , 2015 .

[20]  David J. Martin,et al.  Spatio-Temporal Population Modelling for Enhanced Assessment of Urban Exposure to Flood Risk , 2016 .

[21]  K. Steinnocher,et al.  Object-oriented analysis of image and LiDAR data and its potential for a dasymetric mapping application , 2008 .

[22]  F. J. Gallego,et al.  A population density grid of the European Union , 2010 .

[23]  Emiliano Miluzzo,et al.  A survey of mobile phone sensing , 2010, IEEE Communications Magazine.

[24]  Petr Dobrovolný,et al.  The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic , 2015 .

[25]  Johannes Scholz,et al.  Spatial Accuracy Evaluation of Population Density Grid Disaggregations with Corine Landcover , 2013, AGILE Conf..

[26]  Kang Chaogui Traffic Flow Simulation Based on Call Detail Records , 2012 .

[27]  Adam Mertel,et al.  Visualization and spatial analysis of police open data as a part of community policing in the city of Pardubice (Czech Republic) , 2016, Ann. GIS.

[28]  Michael E. Bufalino,et al.  Street-Weighted Interpolation Techniques for Demographic Count Estimation in Incompatible Zone Systems , 2005 .

[29]  Ondřej Mulíček,et al.  Urban rhythms: A chronotopic approach to urban timespace , 2015 .

[30]  LI Qingqua Smartphone-based individual indoor spatiotemporal behavior analysis , 2015 .

[31]  Petr Kubícek,et al.  Flood Management and Geoinformation Support within the Emergency Cycle (EU Example) , 2011, ISESS.

[32]  Barbara P. Buttenfield,et al.  Dasymetric Modeling and Uncertainty , 2014, Annals of the Association of American Geographers. Association of American Geographers.

[33]  David Pastor-Escuredo,et al.  Flooding through the lens of mobile phone activity , 2014, IEEE Global Humanitarian Technology Conference (GHTC 2014).

[34]  Marjan Lep,et al.  Combining the grid‐based spatial planning and network‐based transport planning , 2009 .

[35]  Lukáš Herman,et al.  Cartographic Principles for Standardized CartographicVisualization for Crisis Management Community , 2016 .

[36]  A. Tatem,et al.  Dynamic population mapping using mobile phone data , 2014, Proceedings of the National Academy of Sciences.

[37]  Zbigniew Smoreda,et al.  Everyday space–time geographies: using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn , 2015, Int. J. Geogr. Inf. Sci..

[38]  L. Bengtsson,et al.  Improved Response to Disasters and Outbreaks by Tracking Population Movements with Mobile Phone Network Data: A Post-Earthquake Geospatial Study in Haiti , 2011, PLoS medicine.

[39]  Lukas Kencl,et al.  Active GSM cell-id tracking: "Where Did You Disappear?" , 2008, MELT '08.

[40]  O. Järv,et al.  Using Mobile Positioning Data to Model Locations Meaningful to Users of Mobile Phones , 2010 .

[41]  P. Nijkamp,et al.  Data from mobile phone operators , 2015 .

[42]  Jakub Novák,et al.  Každodenní život a prostorová mobilita mladých Pražanů: pilotní studie využití lokalizačních dat mobilních telefonů , 2012 .

[43]  Song Gao,et al.  Spatio-Temporal Analytics for Exploring Human Mobility Patterns and Urban Dynamics in the Mobile Age , 2015, Spatial Cogn. Comput..

[44]  Y Liu Towards Big Data-Driven Human Mobility Patterns and Models , 2014 .

[45]  Zhixiao Xie,et al.  A Framework for Interpolating the Population Surface at the Residential-Housing-Unit Level , 2006 .

[46]  Petra Špačková,et al.  A synthetic approach to the delimitation of the Prague Metropolitan Area , 2018 .

[47]  Peter Nijkamp,et al.  Data from mobile phone operators: A tool for smarter cities? , 2015 .

[48]  J. Mennis Generating Surface Models of Population Using Dasymetric Mapping , 2003, The Professional Geographer.

[49]  David J. Martin An Assessment of Surface and Zonal Models of population , 1996, Int. J. Geogr. Inf. Sci..

[50]  Petr Dobrovolný,et al.  Modelled spatio-temporal variability of air temperature in an urban climate and its validation: a case study of Brno, Czech Republic , 2016 .

[51]  Lukáš Herman,et al.  Visualization of Traffic Offences in the City of Brno (Czech Republic): Achieving 3D Thematic Cartography through Open Source and Open Data , 2018 .

[52]  Daniel Seidenglanz,et al.  Odborná analýza vývoje počtu osob oficiálně neregistrovaných veměstě Brně , 2008 .

[53]  John K. Wright A Method of Mapping Densities of Population: With Cape Cod as an Example , 1936 .

[54]  Martin Raubal,et al.  Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study , 2016, Int. J. Geogr. Inf. Sci..

[55]  Rosslyn Ives Census 2011 results , 2012 .