Population distribution modelling at fine spatio-temporal scale based on mobile phone data
暂无分享,去创建一个
Lukáš Herman | Tomáš Řezník | Zdeněk Stachoň | Milan Konečný | Petr Kubíček | Karel Staněk | Jie Shen | Radim Štampach | Šimon Leitgeb | M. Konečný | Karel Stanek | P. Kubíček | Z. Stachoň | T. Řezník | L. Herman | Simon Leitgeb | Jie Shen | R. Štampach
[1] Ondřej Mulíček,et al. Prague: Urban Growth and Regional Sprawl , 2014 .
[2] Lukáš Herman,et al. Visualization and spatial analysis of open data for evacuation planning – pilot study of the Dukovany nuclear power plant (Czech Republic) , 2017 .
[3] Olle Järv,et al. Enhancing spatial accuracy of mobile phone data using multi-temporal dasymetric interpolation , 2017, Int. J. Geogr. Inf. Sci..
[4] Tomáš Řezník,et al. Emergency Support System: Actionable Real-time Intelligence with Fusion Capabilities and Cartographic Displays , 2011 .
[5] Wei Tu,et al. Activity Sequence-Based Indoor Pedestrian Localization Using Smartphones , 2015, IEEE Transactions on Human-Machine Systems.
[6] Wolfgang Reinhardt,et al. Early warning and disaster management: the importance of geographic information (Part A) , 2010, Int. J. Digit. Earth.
[7] Nigel Waters,et al. Fusing non-authoritative data to improve situational awareness in emergencies , 2014, ISCRAM.
[8] R. Ahas,et al. The Seasonal Variability of Population in Estonian Municipalities , 2010 .
[9] X Zhou. Spatial Analysis of Dynamic Data - Identifying City Center , 2014 .
[10] Javier Gallego,et al. A high-resolution population grid map for Europe , 2013 .
[11] Roman Szturc,et al. Advanced methods of cell phone localization for crisis and emergency management applications , 2015, Int. J. Digit. Earth.
[12] Heikki Hämmäinen,et al. A handset‐based platform for measuring mobile service usage , 2007 .
[13] Radim Lískovec,et al. Výzkum časoprostorových rytmů prostřednictvím geolokalizačních technologií , 2016 .
[14] David J. Martin,et al. Developing a Flexible Framework for Spatiotemporal Population Modeling , 2015 .
[15] Yihong Yuan,et al. Analyzing and geo-visualizing individual human mobility patterns using mobile call records , 2010, 2010 18th International Conference on Geoinformatics.
[16] Martin Raubal,et al. Correlating mobile phone usage and travel behavior - A case study of Harbin, China , 2012, Comput. Environ. Urban Syst..
[17] Yu Liu,et al. Towards Estimating Urban Population Distributions from Mobile Call Data , 2012 .
[18] 加藤 邦男,et al. Reference data , 2018, Main Economic Indicators.
[19] Xu Jinle,et al. The Spatio-temporal Heterogeneity Analysis of Massive Urban Mobile Phone Users' Stay Behavior: A Case Study of Shenzhen City , 2015 .
[20] David J. Martin,et al. Spatio-Temporal Population Modelling for Enhanced Assessment of Urban Exposure to Flood Risk , 2016 .
[21] K. Steinnocher,et al. Object-oriented analysis of image and LiDAR data and its potential for a dasymetric mapping application , 2008 .
[22] F. J. Gallego,et al. A population density grid of the European Union , 2010 .
[23] Emiliano Miluzzo,et al. A survey of mobile phone sensing , 2010, IEEE Communications Magazine.
[24] Petr Dobrovolný,et al. The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic , 2015 .
[25] Johannes Scholz,et al. Spatial Accuracy Evaluation of Population Density Grid Disaggregations with Corine Landcover , 2013, AGILE Conf..
[26] Kang Chaogui. Traffic Flow Simulation Based on Call Detail Records , 2012 .
[27] Adam Mertel,et al. Visualization and spatial analysis of police open data as a part of community policing in the city of Pardubice (Czech Republic) , 2016, Ann. GIS.
[28] Michael E. Bufalino,et al. Street-Weighted Interpolation Techniques for Demographic Count Estimation in Incompatible Zone Systems , 2005 .
[29] Ondřej Mulíček,et al. Urban rhythms: A chronotopic approach to urban timespace , 2015 .
[30] LI Qingqua. Smartphone-based individual indoor spatiotemporal behavior analysis , 2015 .
[31] Petr Kubícek,et al. Flood Management and Geoinformation Support within the Emergency Cycle (EU Example) , 2011, ISESS.
[32] Barbara P. Buttenfield,et al. Dasymetric Modeling and Uncertainty , 2014, Annals of the Association of American Geographers. Association of American Geographers.
[33] David Pastor-Escuredo,et al. Flooding through the lens of mobile phone activity , 2014, IEEE Global Humanitarian Technology Conference (GHTC 2014).
[34] Marjan Lep,et al. Combining the grid‐based spatial planning and network‐based transport planning , 2009 .
[35] Lukáš Herman,et al. Cartographic Principles for Standardized CartographicVisualization for Crisis Management Community , 2016 .
[36] A. Tatem,et al. Dynamic population mapping using mobile phone data , 2014, Proceedings of the National Academy of Sciences.
[37] Zbigniew Smoreda,et al. Everyday space–time geographies: using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn , 2015, Int. J. Geogr. Inf. Sci..
[38] L. Bengtsson,et al. Improved Response to Disasters and Outbreaks by Tracking Population Movements with Mobile Phone Network Data: A Post-Earthquake Geospatial Study in Haiti , 2011, PLoS medicine.
[39] Lukas Kencl,et al. Active GSM cell-id tracking: "Where Did You Disappear?" , 2008, MELT '08.
[40] O. Järv,et al. Using Mobile Positioning Data to Model Locations Meaningful to Users of Mobile Phones , 2010 .
[41] P. Nijkamp,et al. Data from mobile phone operators , 2015 .
[42] Jakub Novák,et al. Každodenní život a prostorová mobilita mladých Pražanů: pilotní studie využití lokalizačních dat mobilních telefonů , 2012 .
[43] Song Gao,et al. Spatio-Temporal Analytics for Exploring Human Mobility Patterns and Urban Dynamics in the Mobile Age , 2015, Spatial Cogn. Comput..
[44] Y Liu. Towards Big Data-Driven Human Mobility Patterns and Models , 2014 .
[45] Zhixiao Xie,et al. A Framework for Interpolating the Population Surface at the Residential-Housing-Unit Level , 2006 .
[46] Petra Špačková,et al. A synthetic approach to the delimitation of the Prague Metropolitan Area , 2018 .
[47] Peter Nijkamp,et al. Data from mobile phone operators: A tool for smarter cities? , 2015 .
[48] J. Mennis. Generating Surface Models of Population Using Dasymetric Mapping , 2003, The Professional Geographer.
[49] David J. Martin. An Assessment of Surface and Zonal Models of population , 1996, Int. J. Geogr. Inf. Sci..
[50] Petr Dobrovolný,et al. Modelled spatio-temporal variability of air temperature in an urban climate and its validation: a case study of Brno, Czech Republic , 2016 .
[51] Lukáš Herman,et al. Visualization of Traffic Offences in the City of Brno (Czech Republic): Achieving 3D Thematic Cartography through Open Source and Open Data , 2018 .
[52] Daniel Seidenglanz,et al. Odborná analýza vývoje počtu osob oficiálně neregistrovaných veměstě Brně , 2008 .
[53] John K. Wright. A Method of Mapping Densities of Population: With Cape Cod as an Example , 1936 .
[54] Martin Raubal,et al. Analyzing the distribution of human activity space from mobile phone usage: an individual and urban-oriented study , 2016, Int. J. Geogr. Inf. Sci..
[55] Rosslyn Ives. Census 2011 results , 2012 .