Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves

The Muskat problem models the evolution of the interface between two different fluids in porous media. The Rayleigh-Taylor condition is natural to reach linear stability of the Muskat problem. We show that the Rayleigh-Taylor condition may hold initially but break down in finite time. As a consequence of the method used, we prove the existence of water waves turning.

[1]  David G. Dritschel,et al.  Contour dynamics and contour surgery: Numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows , 1989 .

[2]  Takaaki Nishida,et al.  A note on a theorem of Nirenberg , 1977 .

[3]  A. Córdoba,et al.  Interface evolution: Water waves in 2-D , 2008, 0810.5340.

[4]  J. Escher,et al.  Wave breaking for nonlinear nonlocal shallow water equations , 1998 .

[5]  G. Taylor,et al.  The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[6]  Uriel Frisch,et al.  Finite time analyticity for the two and three dimensional Kelvin-Helmholtz instability , 1981 .

[7]  Robert M. Strain,et al.  On the global existence for the Muskat problem , 2010, 1007.3744.

[8]  A. Córdoba,et al.  Interface evolution: the Hele-Shaw and Muskat problems , 2008, 0806.2258.

[9]  Mary C. Pugh,et al.  Global solutions for small data to the Hele-Shaw problem , 1993 .

[10]  D. Córdoba,et al.  A Maximum Principle for the Muskat Problem for Fluids with Different Densities , 2007, 0712.1090.

[11]  A. Córdoba,et al.  A pointwise estimate for fractionary derivatives with applications to partial differential equations , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  C. Fefferman,et al.  Turning waves and breakdown for incompressible flows , 2010, Proceedings of the National Academy of Sciences.

[13]  Absence of Squirt Singularities for the Multi-Phase Muskat Problem , 2009, 0911.4109.

[14]  Sam Howison,et al.  A note on the two-phase Hele-Shaw problem , 2000, Journal of Fluid Mechanics.

[15]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[16]  F. Yi Global classical solution of Muskat free boundary problem , 2003 .

[17]  David Lannes,et al.  A Stability Criterion for Two-Fluid Interfaces and Applications , 2010, 1005.4565.

[18]  C. Fefferman,et al.  Breakdown of Smoothness for the Muskat Problem , 2012, 1201.2525.

[19]  L. Rayleigh On The Instability Of Jets , 1878 .

[20]  D. Córdoba,et al.  Contour Dynamics of Incompressible 3-D Fluids in a Porous Medium with Different Densities , 2007 .

[21]  A generalized Rayleigh?Taylor condition for the Muskat problem , 2010, 1005.2511.

[22]  Thomas Y. Hou,et al.  Convergence of a Boundary Integral Method for Water Waves , 1996 .

[23]  J. Escher,et al.  On the parabolicity of the Muskat problem: Well-posedness, fingering, and stability results , 2010, 1005.2512.

[24]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[25]  M. Muskat Two Fluid Systems in Porous Media. The Encroachment of Water into an Oil Sand , 1934 .

[26]  E. Hairer,et al.  Solving Ordinary Differential Equations II , 2010 .

[27]  Felix Otto,et al.  Viscous Fingering: An Optimal Bound on the Growth Rate of the Mixing Zone , 1997, SIAM J. Appl. Math..

[28]  D. Ambrose Well-posedness of two-phase Hele–Shaw flow without surface tension , 2004, European Journal of Applied Mathematics.

[29]  C. Bardos,et al.  Domaine d’analycité des solutions de l’équation d’Euler dans un ouvert de $R^n$ , 1977 .

[30]  Joachim Escher,et al.  Classical solutions for Hele-Shaw models with surface tension , 1997, Advances in Differential Equations.

[31]  D. Córdoba,et al.  A note on interface dynamics for convection in porous media , 2008 .

[32]  T. Hou,et al.  Removing the stiffness from interfacial flows with surface tension , 1994 .

[33]  R. Caflisch,et al.  Global existence, singular solutions, and ill‐posedness for the Muskat problem , 2004 .

[34]  Louis Nirenberg,et al.  An abstract form of the nonlinear Cauchy-Kowalewski theorem , 1972 .

[35]  C. Bardos,et al.  Mathematics for 2d Interfaces , 2010, 1005.5329.