Hermite Polynomials and their Applications Associated withBernoulli and Euler Numbers

We derive some interesting identities and arithmetic properties of Bernoulli and Euler polynomials from the orthogonality of Hermite polynomials. Let be the -dimensional vector space over . Then we show that is a good basis for the space for our purpose of arithmetical and combinatorial applications.

[1]  C. Ryoo,et al.  On q-Berstein and q-Hermite polynomials , 2011, 1101.4931.

[2]  Leonard Carlitz,et al.  Note on the Integral of the Product of Several Bernoulli Polynomials , 1959 .

[3]  Seog-Hoon Rim,et al.  A new construction on the q-Bernoulli polynomials , 2011 .

[4]  Yilmaz Simsek Construction a new generating function of Bernstein type polynomials , 2011, Appl. Math. Comput..

[5]  Wolfram Koepf,et al.  On linearization and connection coefficients for generalized Hermite polynomials , 2011, J. Comput. Appl. Math..

[6]  Serkan Araci,et al.  A Study on the Fermionic p-Adic q-Integral Representation on Z p Associated with Weighted q-Bernstein and q-Genocchi Polynomials , 2014 .

[7]  F. Sommen,et al.  Orthogonality of Hermite polynomials in superspace and Mehler type formulae , 2010, 1002.1118.

[8]  Leonard Carlitz,et al.  Multiplication formulas for products of Bernoulli and Euler polynomials , 1959 .

[9]  Yilmaz Simsek,et al.  A New Generating Function of (q-) Bernstein-Type Polynomials and Their Interpolation Function , 2010 .

[10]  L. CARLITZ Arithmetic Properties of Generalized Bernoulli Numbers. , 1959 .

[11]  C. Vignat Old and new results about relativistic Hermite polynomials , 2009, 0911.5513.

[12]  Cheon Seoung Ryoo,et al.  A Note on the q-Euler Numbers and Polynomials with Weak Weight α , 2011, J. Appl. Math..

[13]  Taekyun Kim,et al.  Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials , 2011, 1101.2611.

[14]  Taekyun Kim,et al.  A note on q-Bernstein polynomials , 2010, 1009.0097.

[15]  Taekyun Kim,et al.  Some identities on the q-Euler polynomials of higher order and q-stirling numbers by the fermionic p-adic integral on ℤp , 2009 .

[16]  Y. Simsek,et al.  On the behavior of two variable twisted p-adic Euler q-l-functions , 2009 .

[17]  Hacer Ozden,et al.  p-Adic distribution of the unification of the Bernoulli, Euler and Genocchi polynomials , 2011, Appl. Math. Comput..

[18]  Serkan Araci,et al.  A Study on the Fermionic -Adic -Integral Representation on ℤ Associated with Weighted -Bernstein and -Genocchi Polynomials , 2011 .

[19]  Taekyun Kim,et al.  Some Formulae for the Product of Two Bernoulli and Euler Polynomials , 2012 .

[20]  Steve Fisk Hermite Polynomials , 2000, J. Comb. Theory, Ser. A.