Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range
暂无分享,去创建一个
Kresten Yvind | Elizaveta Semenova | Shima Kadkhodazadeh | Irina Kulkova | Oleksii Kopylov | Daniele Barettin | Alberto Cagliani | Kristoffer Almdal | Morten Willatzen | E. Semenova | K. Yvind | M. Willatzen | A. Cagliani | K. Almdal | I. Kulkova | S. Kadkhodazadeh | D. Barettin | O. Kopylov
[1] T. Jones,et al. Surface morphology evolution during the overgrowth of large InAs–GaAs quantum dots , 2001 .
[2] M. Seul,et al. Domain Shapes and Patterns: The Phenomenology of Modulated Phases , 1995, Science.
[3] K. Yvind,et al. Low-jitter and high-power 40-GHz all-active mode-locked lasers , 2004, IEEE Photonics Technology Letters.
[4] Matthias Kuntz,et al. High-Speed Mode-Locked Quantum-Dot Lasers and Optical Amplifiers , 2007, Proceedings of the IEEE.
[5] Philippe Caroff,et al. High-gain and low-threshold InAs quantum-dot lasers on InP , 2005 .
[6] Kresten Yvind,et al. Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures , 2008, SPIE OPTO.
[7] Peter Blood,et al. Characterization of semiconductor laser gain media by the segmented contact method , 2003 .
[8] M. Thompson,et al. InGaAs Quantum-Dot Mode-Locked Laser Diodes , 2009, IEEE Journal of Selected Topics in Quantum Electronics.
[9] Andrea Fiore,et al. Simultaneous two-state lasing in quantum-dot lasers , 2003 .
[10] Kresten Yvind,et al. Investigating the chemical and morphological evolution of GaAs capped InAs/InP quantum dots emitting at 1.5μm using aberration-corrected scanning transmission electron microscopy , 2011 .
[11] E. Rafailov,et al. Mode-locked quantum-dot lasers , 2007 .
[12] Elias Towe,et al. Self-assembled (In,Ga)As/GaAs quantum-dot nanostructures: strain distribution and electronic structure , 2002 .
[13] Kresten Yvind,et al. Metal organic vapor-phase epitaxy of InAs/InGaAsP quantum dots for laser applications at 1.5 μm , 2011 .
[14] Morten Willatzen,et al. Computational Methods for Electromechanical Fields in Self-Assembled Quantum Dots , 2012 .
[15] G. E. Pikus,et al. Symmetry and strain-induced effects in semiconductors , 1974 .
[16] Luke J. Mawst,et al. Nanofabrication of III–V semiconductors employing diblock copolymer lithography , 2010 .
[17] Xinyu Li,et al. Thermodynamic theory of shape evolution induced by Si capping in Ge quantum dot self-assembly , 2009 .
[18] K. Kern,et al. Interplay between thermodynamics and kinetics in the capping of InAs/GaAs(001) quantum dots. , 2006, Physical review letters.
[19] L. Voon,et al. The k p Method: Electronic Properties of Semiconductors , 2009 .
[20] Y Yohan Barbarin,et al. Stacking, polarization control, and lasing of wavelength tunable (1.55 μm region) InAs/InGaAsP/InP (100) quantum dots , 2007 .
[21] Mitsuru Sugawara,et al. Quantum-dot semiconductor optical amplifiers , 2002, SPIE/OSA/IEEE Asia Communications and Photonics.
[22] D. Poitras,et al. An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses. , 2009, Optics express.
[23] Jeong-Yong Choi,et al. Large area tunable arrays of graphene nanodots fabricated using diblock copolymer micelles , 2012, Nanotechnology.
[24] Lei Zhang,et al. Optical gain and absorption of quantum dots measured using an alternative segmented contact method , 2006, IEEE Journal of Quantum Electronics.
[25] G. Fredrickson,et al. Block Copolymers—Designer Soft Materials , 1999 .
[26] L. J. Mawst,et al. Quantum dot active regions based on diblock copolymer nanopatterning and selective MOCVD growth , 2011, IEEE Winter Topicals 2011.