A simulation study for anticipated accuracy of lunar gravity field model by SELENE tracking data

Abstract Results of numerical simulations are presented to examine the global gravity field recovery capability of the Japanese lunar exploration project SELENE (SELenological and ENgineering Explorer) which will be launched in 2007. New characteristics of the SELENE lunar gravimetry include 4-way satellite-to-satellite Doppler tracking of main orbiter and differential VLBI tracking of two small free-flier satellites. It is shown that the proposed satellite constellation will provide the first truly global satellite tracking data coverage. The expected results from these data are; (1) drastic reduction in far-side gravity error, (2) estimation of many gravity coefficients by the observation, not by a priori information, and (3) one order of magnitude improvement over existing gravity models for low-degree field.