Two-view digital breast tomosynthesis screening with synthetically reconstructed projection images: comparison with digital breast tomosynthesis with full-field digital mammographic images.

PURPOSE To compare the performance of two versions of reconstructed two-dimensional (2D) images in combination with digital breast tomosynthesis (DBT) versus the performance of standard full-field digital mammography (FFDM) plus DBT. MATERIALS AND METHODS This trial had ethical committee approval, and all participants gave written informed consent. Examinations (n = 24 901) in women between the ages of 50 and 69 years (mean age, 59.2 years) were interpreted prospectively as part of a screening trial that included independent interpretations of FFDM plus DBT and reconstructed 2D images plus DBT. Reconstructed 2D images do not require radiation exposure. Using analyses for binary data that accounted for correlated interpretations and were adjusted for reader-specific volume, two versions (initial and current) of reconstructed 2D images used during trial periods 1 (from November 22, 2010, to December 21, 2011; 12 631 women) and 2 (from January 20, 2012, to December 19, 2012; 12 270 women) were compared in terms of cancer detection and false-positive rates with the corresponding FFDM plus DBT interpretations. RESULTS Cancer detection rates were 8.0, 7.4, 7.8, and 7.7 per 1000 screening examinations for FFDM plus DBT in period 1, initial reconstructed 2D images plus DBT in period 1, FFDM plus DBT in period 2, and current reconstructed 2D images plus DBT in period 2, respectively. False-positive scores were 5.3%, 4.6%, 4.6%, and 4.5%, respectively. Corresponding reader-adjusted paired comparisons of false-positive scores revealed significant differences for period 1 (P = .012) but not for period 2 (ratio = 0.99; 95% confidence interval: 0.88, 1.11; P = .85). CONCLUSION The combination of current reconstructed 2D images and DBT performed comparably to FFDM plus DBT and is adequate for routine clinical use when interpreting screening mammograms.

[1]  Per Skaane,et al.  Screen-film mammography versus full-field digital mammography with soft-copy reading: randomized trial in a population-based screening program--the Oslo II Study. , 2004, Radiology.

[2]  David Gur,et al.  Dose reduction in digital breast tomosynthesis (DBT) screening using synthetically reconstructed projection images: an observer performance study. , 2012, Academic radiology.

[3]  David Gur,et al.  Digital breast tomosynthesis: observer performance study. , 2009, AJR. American journal of roentgenology.

[4]  E. Halpern,et al.  Assessing radiologist performance using combined digital mammography and breast tomosynthesis compared with digital mammography alone: results of a multicenter, multireader trial. , 2013, Radiology.

[5]  Paolo Peterlongo,et al.  Prospective study of breast tomosynthesis as a triage to assessment in screening , 2012, Breast Cancer Research and Treatment.

[6]  Tor D Tosteson,et al.  Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography. , 2007, AJR. American journal of roentgenology.

[7]  Andriy I. Bandos,et al.  Prospective trial comparing full-field digital mammography (FFDM) versus combined FFDM and tomosynthesis in a population-based screening programme using independent double reading with arbitration , 2013, European Radiology.

[8]  Federica Zanca,et al.  Two-view and single-view tomosynthesis versus full-field digital mammography: high-resolution X-ray imaging observer study. , 2012, Radiology.

[9]  I Andersson,et al.  The diagnostic accuracy of dual-view digital mammography, single-view breast tomosynthesis and a dual-view combination of breast tomosynthesis and digital mammography in a free-response observer performance study. , 2010, Radiation protection dosimetry.

[10]  David Gur,et al.  Detection and classification of calcifications on digital breast tomosynthesis and 2D digital mammography: a comparison. , 2011, AJR. American journal of roentgenology.

[11]  Andriy I. Bandos,et al.  Comparison of digital mammography alone and digital mammography plus tomosynthesis in a population-based screening program. , 2013, Radiology.

[12]  S. Ciatto,et al.  Integration of 3D digital mammography with tomosynthesis for population breast-cancer screening (STORM): a prospective comparison study. , 2013, The Lancet. Oncology.

[13]  T. Kahn,et al.  Average Glandular Dose in Digital Mammography and Breast Tomosynthesis , 2012, Fortschritte auf dem Gebiet der Röntgenstrahlen und der bildgebenden Verfahren.

[14]  David Gur,et al.  Time to diagnosis and performance levels during repeat interpretations of digital breast tomosynthesis: preliminary observations. , 2010, Academic radiology.

[15]  J. Baker,et al.  Breast tomosynthesis: state-of-the-art and review of the literature. , 2011, Academic radiology.

[16]  I. Sechopoulos A review of breast tomosynthesis. Part I. The image acquisition process. , 2013, Medical physics.

[17]  R. Edward Hendrick,et al.  Performance comparison of single-view digital breast tomosynthesis plus single-view digital mammography with two-view digital mammography , 2013, European Radiology.

[18]  Unni Haakenaasen,et al.  Digital breast tomosynthesis (DBT): initial experience in a clinical setting , 2012, Acta radiologica.

[19]  Per Skaane,et al.  Population-based mammography screening: comparison of screen-film and full-field digital mammography with soft-copy reading--Oslo I study. , 2003, Radiology.