Impact of experimental noise and annotation imprecision on data quality in microarray experiments.

Data quality is intrinsically influenced by design, technical, and analytical parameters. Quality parameters have not yet been well defined for gene expression analysis by microarrays, though ad interim, following recommended good experimental practice guidelines should ensure generation of reliable and reproducible data. Here we summarize essential practical recommendations for experimental design, technical considerations, feature annotation issues, and standardization efforts.

[1]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[2]  Paul T. Spellman,et al.  Standards for microarray data: an open letter. , 2004, Environmental health perspectives.

[3]  Chris F. Taylor,et al.  The MGED Ontology: a resource for semantics-based description of microarray experiments , 2006, Bioinform..

[4]  Thomas Ragg,et al.  The RIN: an RNA integrity number for assigning integrity values to RNA measurements , 2006, BMC Molecular Biology.

[5]  L. Ein-Dor,et al.  Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Ryszard Maleszka,et al.  Microarray reality checks in the context of a complex disease , 2004, Nature Biotechnology.

[7]  B. De Moor,et al.  Comparison and meta-analysis of microarray data: from the bench to the computer desk. , 2003, Trends in genetics : TIG.

[8]  C. Ball,et al.  Repeatability of published microarray gene expression analyses , 2009, Nature Genetics.

[9]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[10]  Kellie J Archer,et al.  Evaluation of quality-control criteria for microarray gene expression analysis. , 2004, Clinical chemistry.

[11]  Maqc Consortium The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements , 2006, Nature Biotechnology.

[12]  M. Sarwal,et al.  In praise of arrays , 2009, Pediatric Nephrology.

[13]  Felix W Frueh,et al.  Impact of microarray data quality on genomic data submissions to the FDA , 2006, Nature Biotechnology.

[14]  E G Jones,et al.  Dysregulation of the fibroblast growth factor system in major depression. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Tom S. Price,et al.  Bioinformatic Analysis of Circadian Gene Oscillation in Mouse Aorta , 2005, Circulation.

[16]  Kazuho Ikeo,et al.  CIBEX: center for information biology gene expression database. , 2003, Comptes rendus biologies.

[17]  Evelyn Strauss,et al.  Arrays of Hope , 2006, Cell.

[18]  Simon Frantz,et al.  An array of problems , 2005, Nature reviews. Drug discovery.

[19]  Jason E. Stewart,et al.  Design and implementation of microarray gene expression markup language (MAGE-ML) , 2002, Genome Biology.

[20]  Brian D Athey,et al.  Guidelines for incorporating non-perfectly matched oligonucleotides into target-specific hybridization probes for a DNA microarray. , 2004, Nucleic acids research.

[21]  M. Olivier A haplotype map of the human genome , 2003, Nature.

[22]  Paul T. Spellman,et al.  A simple spreadsheet-based, MIAME-supportive format for microarray data: MAGE-TAB , 2006, BMC Bioinformatics.

[23]  Rudolph S. Parrish,et al.  BMC Bioinformatics BioMed Central Research article Sources of variation in Affymetrix microarray experiments , 2005 .

[24]  M. Olivier A haplotype map of the human genome. , 2003, Nature.

[25]  Stefan Michiels,et al.  Prediction of cancer outcome with microarrays: a multiple random validation strategy , 2005, The Lancet.

[26]  John Quackenbush,et al.  Multiple-laboratory comparison of microarray platforms , 2005, Nature Methods.

[27]  Subburaman Mohan,et al.  DNA Microarrays: Their Use and Misuse , 2002, Microcirculation.

[28]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[29]  Fan Meng,et al.  Web-based GeneChip analysis system for large-scale collaborative projects , 2007, Bioinform..

[30]  David C Christiani,et al.  Urinary 8-hydroxy-2'-deoxyguanosine as a biomarker of oxidative DNA damage in workers exposed to fine particulates. , 2004, Environmental health perspectives.

[31]  Xuesong Lu,et al.  The effect of GeneChip gene definitions on the microarray study of cancers. , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[32]  John Quackenbush,et al.  Standardizing the standards , 2006 .

[33]  Helen E. Parkinson,et al.  ArrayExpress—a public database of microarray experiments and gene expression profiles , 2006, Nucleic Acids Res..

[34]  C. Ball,et al.  Submission of Microarray Data to Public Repositories , 2004, PLoS biology.

[35]  Virginia Pascual,et al.  Gene expression in peripheral blood mononuclear cells from children with diabetes. , 2007, The Journal of clinical endocrinology and metabolism.

[36]  The External Rna Controls Consortium The External RNA Controls Consortium: a progress report , 2005 .

[37]  Kevin R. Coombes,et al.  Identifying and Quantifying Sources of Variation in Microarray Data Using High-Density cDNA Membrane Arrays , 2002, J. Comput. Biol..

[38]  Gregory T Sica,et al.  Bias in research studies. , 2006, Radiology.

[39]  Eliot Marshall,et al.  Getting the Noise Out of Gene Arrays , 2004, Science.

[40]  Steen Knudsen,et al.  Alternative mapping of probes to genes for Affymetrix chips , 2004, BMC Bioinformatics.

[41]  Ann M. Richard,et al.  Toward a public toxicogenomics capability for supporting predictive toxicology: survey of current resources and chemical indexing of experiments in GEO and ArrayExpress. , 2009, Toxicological sciences : an official journal of the Society of Toxicology.

[42]  Bryan Frank,et al.  Independence and reproducibility across microarray platforms , 2005, Nature Methods.

[43]  P S Pine,et al.  Use of diagnostic accuracy as a metric for evaluating laboratory proficiency with microarray assays using mixed-tissue RNA reference samples. , 2008, Pharmacogenomics.

[44]  K. Gallagher,et al.  A framework for the use of genomics data at the EPA , 2006, Nature Biotechnology.

[45]  L. Feuk,et al.  Detection of large-scale variation in the human genome , 2004, Nature Genetics.

[46]  Kenneth H Buetow,et al.  Interlaboratory comparability study of cancer gene expression analysis using oligonucleotide microarrays. , 2005, Clinical cancer research : an official journal of the American Association for Cancer Research.

[47]  Teresa A. Webster,et al.  Probe selection for high-density oligonucleotide arrays , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J Quackenbush,et al.  Use of RNA and genomic DNA references for inferred comparisons in DNA microarray analyses. , 2002, BioTechniques.

[49]  D. Lockhart,et al.  Expression monitoring by hybridization to high-density oligonucleotide arrays , 1996, Nature Biotechnology.

[50]  T. Zhu,et al.  Microarray analysis of the transcriptome as a stepping stone towards understanding biological systems: practical considerations and perspectives. , 2006, The Plant journal : for cell and molecular biology.

[51]  R. Kush,et al.  Global clinical data interchange standards are here! , 2007, Drug discovery today.

[52]  E. Chudin,et al.  Assessment of the relationship between signal intensities and transcript concentration for Affymetrix GeneChip® arrays , 2001, Genome Biology.

[53]  Rickard Sandberg,et al.  Improved precision and accuracy for microarrays using updated probe set definitions , 2007, BMC Bioinformatics.

[54]  A. Scherer Batch Effects and Noise in Microarray Experiments , 2009 .

[55]  Weiping Ma,et al.  Embryogenesis Microarray for Profiling Gene Expression Patterns during 15,000 Unique Zebrafish Est Clusters and Their Future Use in Material Supplemental , 2022 .

[56]  James C. Hu,et al.  The Gene Ontology’s Reference Genome Project: A Unified Framework for Functional Annotation across Species , 2009 .

[57]  S. Enkemann,et al.  A sequence-based identification of the genes detected by probesets on the Affymetrix U133 plus 2.0 array , 2005, Nucleic acids research.

[58]  Karl Kornacker,et al.  Chipping away at the chip bias: RNA degradation in microarray analysis , 2003, Nature Genetics.

[59]  T. Ideker,et al.  A new approach to decoding life: systems biology. , 2001, Annual review of genomics and human genetics.

[60]  J. M. Hancock,et al.  Post-publication sharing of data and tools , 2009, Nature.

[61]  J. Ioannidis Microarrays and molecular research: noise discovery? , 2005, The Lancet.

[62]  R. Myers,et al.  Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data , 2005, Nucleic acids research.

[63]  C. Ball,et al.  Microarray Data Standards: An Open Letter , 2004, Environmental Health Perspectives.

[64]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[65]  T R Zacharewski,et al.  Assessment of clone identity and sequence fidelity for 1189 IMAGE cDNA clones. , 2001, Nucleic acids research.

[66]  Alberto Cambrosio,et al.  Making a New Technology Work: The Standardization and Regulation of Microarrays , 2007, The Yale journal of biology and medicine.

[67]  Matthew E. Ritchie,et al.  A re-annotation pipeline for Illumina BeadArrays: improving the interpretation of gene expression data , 2009, Nucleic acids research.

[68]  K. Buetow,et al.  Allelic variation in gene expression is common in the human genome. , 2003, Genome research.

[69]  Robert Gentleman,et al.  Statistical Analyses and Reproducible Research , 2007 .