Reduced dissipation AUSM-family fluxes: HR-SLAU2 and HR-AUSM+-up for high resolution unsteady flow simulations

Abstract The reduced dissipation approach is applied to AUSM-family flux functions of SLAU2 (as well as its predecessor, SLAU) and AUSM + -up for high resolution simulations. In this approach, a dominant dissipation term (of the pressure flux) in each flux function is locally controlled (0  γ HR γ HR : dissipation coefficient) if a cell geometry is of high quality (i.e., fully or nearly rectangular) and flow is smooth, and the original method is recovered otherwise ( γ HR  = 1). Numerical tests demonstrate that the proposed HR (High-Resolution, or Hi-Res) -SLAU2 achieves better resolution (while maintaining robustness) for a wide-ranging Mach numbers (from Mach 6 × 10 −4 to 8.1), compared with the original counterparts ( γ HR  = 1) or an existing method (HR-Roe), whereas HR-AUSM + -up shows degraded resolution due to a large cutoff Mach number at low speeds and insufficient dissipation at super- and hypersonic speeds, although a smaller γ HR is allowed. Furthermore, a new wiggle detector is proposed to improve both convergence and solution accuracy.

[1]  Doru Caraeni,et al.  Turbulent Jet Noise Simulation and Propagation Using a 3rd Order MUSCL/CD Scheme on Unstructured Grid and Ffowcs-Williams Hawkings , 2016 .

[2]  Wayne A. Smith,et al.  Preconditioning Applied to Variable and Constant Density Flows , 1995 .

[3]  Shishir A. Pandya,et al.  Capsule Abort Recontact Simulation , 2006 .

[4]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[5]  Eiji Shima,et al.  Performance of Low-Dissipation Euler Fluxes and Preconditioned LU-SGS at Low Speeds , 2011 .

[7]  Meng-Sing Liou,et al.  A robust and accurate approach to computing compressible multiphase flow: Stratified flow model and AUSM+-up scheme , 2007, J. Comput. Phys..

[8]  Dimitri J. Mavriplis,et al.  Revisiting the Least-squares Procedure for Gradient Reconstruction on Unstructured Meshes , 2003 .

[9]  R. Rogallo Numerical experiments in homogeneous turbulence , 1981 .

[10]  E Weinan,et al.  A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow , 1992 .

[11]  Meng-Sing Liou,et al.  Numerical speed of sound and its application to schemes for all speeds , 1999 .

[12]  Carl Ollivier-Gooch,et al.  Accuracy preserving limiter for the high-order accurate solution of the Euler equations , 2009, J. Comput. Phys..

[13]  José C. Páscoa,et al.  A pressure-based high resolution numerical method for resistive MHD , 2014, J. Comput. Phys..

[14]  Eiji Shima,et al.  Green–Gauss/Weighted-Least-Squares Hybrid Gradient Reconstruction for Arbitrary Polyhedra Unstructured Grids , 2013 .

[15]  Edward N. Tinoco,et al.  Grid Quality and Resolution Issues from the Drag Prediction Workshop Series , 2008 .

[16]  Eiji Shima,et al.  On the improvement of the all-speed flux scheme for very low Mach number flows , 2013 .

[17]  H. Xia,et al.  Large-eddy simulations of chevron jet flows with noise predictions , 2009 .

[18]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[19]  Meng-Sing Liou,et al.  A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..

[20]  Alain Dervieux,et al.  Large‐eddy simulation of a bluff‐body flow on unstructured grids , 2002 .

[21]  Domenic D'Ambrosio,et al.  Numerical Instablilities in Upwind Methods: Analysis and Cures for the “Carbuncle” Phenomenon , 2001 .

[22]  Christophe Eric Corre,et al.  On the extension of the AUSM+ scheme to compressible two-fluid models , 2003 .

[23]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[24]  Boris Diskin,et al.  Evaluation of multigrid solutions for turbulent flows , 2014 .

[25]  Peter A. Gnoffo,et al.  Aerothermodynamic Analyses of Towed Ballutes , 2006 .

[26]  Nikolaus A. Adams,et al.  An adaptive central-upwind weighted essentially non-oscillatory scheme , 2010, J. Comput. Phys..

[27]  Jack R. Edwards,et al.  Towards unified CFD simulations of real fluid flows , 2001 .

[28]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[29]  Eiji Shima,et al.  Validation of Arbitrary Unstructured CFD Code for Aerodynamic Analyses , 2011 .

[30]  Keiichi Ishiko,et al.  Implicit LES for Two-Dimensional Turbulence Using Shock Capturing Monotone Scheme , 2006 .

[31]  Antony Jameson,et al.  Formulation of Kinetic Energy Preserving Conservative Schemes for Gas Dynamics and Direct Numerical Simulation of One-Dimensional Viscous Compressible Flow in a Shock Tube Using Entropy and Kinetic Energy Preserving Schemes , 2008, J. Sci. Comput..

[32]  Chaowei Hu,et al.  No . 98-32 Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes , 1998 .

[33]  S. Corrsin,et al.  Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence , 1971, Journal of Fluid Mechanics.

[34]  Norbert Kroll,et al.  The DLR Flow Solver TAU - Status and Recent Algorithmic Developments , 2014 .

[35]  Christopher L. Rumsey,et al.  Turbulence Modeling Verification and Validation , 2014 .

[36]  Keiichi Kitamura,et al.  Evaluation of Euler Fluxes for Hypersonic Flow Computations , 2009 .

[37]  Meng-Sing Liou Open Problems in Numerical Fluxes: Proposed Resolutions , 2011 .

[38]  Sébastien Deck,et al.  Zonal-detached-eddy simulation of the flow around a high-lift configuration , 2005 .

[39]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[40]  A. Oyama,et al.  Slit resonator damping estimation and proposal of a new geometry , 2012 .

[41]  Siva Nadarajah,et al.  Detached-Eddy Simulation of a Wing Tip Vortex at Dynamic Stall Conditions , 2009 .

[42]  Eiji Shima,et al.  Numerical and Experimental Investigations of Epsilon Launch Vehicle Aerodynamics at Mach 1.5 , 2013 .

[43]  Hong Luo,et al.  Hybrid Grid Generation Method for Complex Geometries , 2010 .

[44]  Meng-Sing Liou,et al.  How to solve compressible multifluid equations: a simple, robust and accurate method , 2007 .

[45]  Andrew J. Dorgan,et al.  A Reduced Dissipation Approach for Unsteady Flows on , 2012 .

[46]  Erik Dick,et al.  Pressure-velocity coupling for unsteady low Mach number flow simulations: An improvement of the AUSM+-up scheme , 2013, J. Comput. Appl. Math..

[47]  Meng-Sing Liou,et al.  Extension and Comparative Study of AUSM-Family Schemes for Compressible Multiphase Flow Simulations , 2014 .

[48]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[49]  Philippe R. Spalart,et al.  Towards the prediction of noise from jet engines , 2003 .

[50]  Eiji Shima,et al.  Simple and Parameter-Free Second Slope Limiter for Unstructured Grid Aerodynamic Simulations , 2012 .

[51]  Shingo Matsuyama,et al.  Performance of all-speed AUSM-family schemes for DNS of low Mach number turbulent channel flow , 2014 .

[52]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[53]  Marcel Vinokur,et al.  Upwind algorithms for general thermo-chemical nonequilibrium flows , 1989 .

[54]  Meng-Sing Liou,et al.  An Accurate and Robust Flux Splitting Scheme for Shock and Contact Discontinuities , 1997, SIAM J. Sci. Comput..

[55]  Eiji Shima,et al.  Towards shock-stable and accurate hypersonic heating computations: A new pressure flux for AUSM-family schemes , 2013, J. Comput. Phys..

[56]  Sébastien Deck,et al.  Zonal-Detached Eddy Simulation of Transonic Buffet on a Civil Aircraft Type Configuration , 2008 .

[57]  P. Catalano,et al.  CFD Contribution to the Aerodynamic Data Set of the Vega Launcher , 2007 .

[58]  Atsushi Hashimoto,et al.  Toward the Fastest Unstructured CFD Code "FaSTAR" , 2012 .

[59]  Eiji Shima,et al.  Parameter-Free Simple Low-Dissipation AUSM-Family Scheme for All Speeds , 2011 .

[60]  Eiji Shima,et al.  Multidimensional numerical noise from captured shock wave and its cure , 2013 .

[61]  Christian Tenaud,et al.  Evaluation of TVD high resolution schemes for unsteady viscous shocked flows , 2000 .

[62]  Chongam Kim,et al.  Multi-dimensional limiting process for hyperbolic conservation laws on unstructured grids , 2005, J. Comput. Phys..

[63]  Keiichi Kitamura,et al.  A simple interface sharpening technique with a hyperbolic tangent function applied to compressible two-fluid modeling , 2014, J. Comput. Phys..

[64]  P. Spalart Detached-Eddy Simulation , 2009 .

[65]  Antony Jameson,et al.  The Construction of Discretely Conservative Finite Volume Schemes that Also Globally Conserve Energy or Entropy , 2008, J. Sci. Comput..

[66]  Marius Paraschivoiu,et al.  Self-Adaptive Upwinding for Large Eddy Simulation of Turbulent Flows on Unstructured Elements , 2009 .

[67]  Alain Dervieux,et al.  A low-diffusion MUSCL scheme for LES on unstructured grids , 2004 .

[68]  M. Liou A Sequel to AUSM , 1996 .