The 2-distance coloring of the Cartesian product of cycles using optimal Lee codes

Let C"m be the cycle of length m. We denote the Cartesian product of n copies of C"m by G(n,m):=C"[email protected]?C"[email protected][email protected]?C"m. The k-distance chromatic number @g"k(G) of a graph G is @g(G^k) where G^k is the kth power of the graph G=(V,E) in which two distinct vertices are adjacent in G^k if and only if their distance in G is at most k. The k-distance chromatic number of G(n,m) is related to optimal codes over the ring of integers modulo m with minimum Lee distance k+1. In this paper, we consider @g"2(G(n,m)) for n=3 and m>=3. In particular, we compute exact values of @g"2(G(3,m)) for [email protected][email protected]?8 and m=4k, and upper bounds for m=3k or m=5k, for any positive integer k. We also show that the maximal size of a code in Z"6^3 with minimum Lee distance 3 is 26.

[1]  Simon Špacapan Optimal Lee-Type Local Structures in Cartesian Products of Cycles and Paths , 2007, SIAM J. Discret. Math..

[2]  G. Wegner Graphs with given diameter and a coloring problem , 1977 .

[3]  Éric Sopena,et al.  Coloring the square of the Cartesian product of two cycles , 2010, Discret. Math..

[4]  Gretchen L. Matthews,et al.  Acyclic colorings of products of trees , 2006, Inf. Process. Lett..

[5]  David R. Wood,et al.  Colourings of the Cartesian Product of Graphs and Multiplicative Sidon Sets , 2007, Electron. Notes Discret. Math..

[6]  André Raspaud,et al.  Acyclic and k-distance coloring of the grid , 2003, Inf. Process. Lett..

[7]  Ron M. Roth,et al.  Introduction to Coding Theory , 2019, Discrete Mathematics.

[8]  Frédéric Havet Choosability of the square of planar subcubic graphs with large girth , 2009, Discret. Math..

[9]  S. Golomb,et al.  Perfect Codes in the Lee Metric and the Packing of Polyominoes , 1970 .

[10]  Jon-Lark Kim,et al.  MDS codes over finite principal ideal rings , 2009, Des. Codes Cryptogr..

[11]  脇 克志 An Introduction to MAGMA , 1995 .

[12]  Daniel W. Cranston,et al.  List‐coloring the square of a subcubic graph , 2008, J. Graph Theory.

[13]  Patric R. J. Östergård On a hypercube coloring problem , 2004, J. Comb. Theory, Ser. A.

[14]  Panos M. Pardalos,et al.  A coloring problem on the n-cube , 2000, Discret. Appl. Math..

[15]  Jörn Quistorff New upper bounds on Lee codes , 2006, Discret. Appl. Math..

[16]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[17]  Bruce A. Reed,et al.  List Colouring Squares of Planar Graphs , 2007, Electron. Notes Discret. Math..

[18]  Mohammad R. Salavatipour,et al.  A bound on the chromatic number of the square of a planar graph , 2005, J. Comb. Theory, Ser. B.

[19]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[20]  Martin Tancer,et al.  List-Coloring Squares of Sparse Subcubic Graphs , 2008, SIAM J. Discret. Math..

[21]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[22]  Ding-Zhu Du,et al.  New bounds on a hypercube coloring problem , 2002, Inf. Process. Lett..