Analysing and characterising optimization problems using length scale

Analysis of optimization problem landscapes is fundamental in the understanding and characterisation of problems and the subsequent practical performance of algorithms. In this paper, a general framework is developed for characterising black-box optimization problems based on length scale, which measures the change in objective function with respect to the distance between candidate solution pairs. Both discrete and continuous problems can be analysed using the framework, however, in this paper, we focus on continuous optimization. Length scale analysis aims to efficiently and effectively utilise the information available in black-box optimization. Analytical properties regarding length scale are discussed and illustrated using simple example problems. A rigorous sampling methodology is developed and demonstrated to improve upon current practice. The framework is applied to the black-box optimization benchmarking problem set, and shows greater ability to discriminate between the problems in comparison to seven well-known landscape analysis techniques. Dimensionality reduction and clustering techniques are applied comparatively to an ensemble of the seven techniques and the length scale information to gain insight into the relationships between problems. A fundamental summary of length scale information is an estimate of its probability density function, which is shown to capture salient structural characteristics of the benchmark problems.

[1]  Sébastien Vérel,et al.  Local Search Heuristics: Fitness Cloud versus Fitness Landscape , 2004, ECAI.

[2]  Weixiong Zhang,et al.  Phase Transitions and Backbones of the Asymmetric Traveling Salesman Problem , 2011, J. Artif. Intell. Res..

[3]  John R. Rice,et al.  The Algorithm Selection Problem , 1976, Adv. Comput..

[4]  Michael Affenzeller,et al.  Comprehensive and Automatic Fitness Landscape Analysis Using HeuristicLab , 2011, EUROCAST.

[5]  P. Stadler,et al.  The landscape of the traveling salesman problem , 1992 .

[6]  Charu C. Aggarwal,et al.  On the Surprising Behavior of Distance Metrics in High Dimensional Spaces , 2001, ICDT.

[7]  L. D. Whitley,et al.  Complexity Theory and the No Free Lunch Theorem , 2005 .

[8]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[9]  Phil Husbands,et al.  Fitness Landscapes and Evolvability , 2002, Evolutionary Computation.

[10]  G. Beliakov Interpolation of Lipschitz functions , 2006 .

[11]  Marcus Gallagher,et al.  Sampling Techniques and Distance Metrics in High Dimensional Continuous Landscape Analysis: Limitations and Improvements , 2014, IEEE Transactions on Evolutionary Computation.

[12]  Weixiong Zhang,et al.  A Study of Complexity Transitions on the Asymmetric Traveling Salesman Problem , 1996, Artif. Intell..

[13]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[14]  Marcus Gallagher,et al.  Fitness Distance Correlation of Neural Network Error Surfaces: A Scalable, Continuous Optimization Problem , 2001, ECML.

[15]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[16]  B. P. Zhang,et al.  Estimation of the Lipschitz constant of a function , 1996, J. Glob. Optim..

[17]  L. Chambers Practical methods of optimization (2nd edn) , by R. Fletcher. Pp. 436. £34.95. 2000. ISBN 0 471 49463 1 (Wiley). , 2001, The Mathematical Gazette.

[18]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[19]  Michael Affenzeller,et al.  A Comprehensive Survey on Fitness Landscape Analysis , 2012, Recent Advances in Intelligent Engineering Systems.

[20]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[21]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[22]  John N. Tsitsiklis,et al.  Introduction to Probability , 2002 .

[23]  M. C. Jones,et al.  A reliable data-based bandwidth selection method for kernel density estimation , 1991 .

[24]  Marcus Gallagher,et al.  Empirical Evidence for Ultrametric Structure in Multi-layer Perceptron Error Surfaces , 2002, Neural Processing Letters.

[25]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[26]  Michael L. Overton,et al.  Numerical Computing with IEEE Floating Point Arithmetic , 2001 .

[27]  Vincenzo Cutello,et al.  Parallel Problem Solving from Nature - PPSN XII , 2012, Lecture Notes in Computer Science.

[28]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[29]  R. Fletcher Practical Methods of Optimization , 1988 .

[30]  Kevin Leyton-Brown,et al.  Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.

[31]  L. Darrell Whitley,et al.  Comparing the Niches of CMA-ES, CHC and Pattern Search Using Diverse Benchmarks , 2006, PPSN.

[32]  Christian L. Müller,et al.  Global Characterization of the CEC 2005 Fitness Landscapes Using Fitness-Distance Analysis , 2011, EvoApplications.

[33]  Julian Francis Miller,et al.  Information Characteristics and the Structure of Landscapes , 2000, Evolutionary Computation.

[34]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[35]  Kate Smith-Miles,et al.  Measuring algorithm footprints in instance space , 2012, 2012 IEEE Congress on Evolutionary Computation.

[36]  E. Weinberger,et al.  Correlated and uncorrelated fitness landscapes and how to tell the difference , 1990, Biological Cybernetics.

[37]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[38]  Bin Li,et al.  Understand behavior and performance of Real Coded Optimization Algorithms via NK-linkage model , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[39]  Bernd Bischl,et al.  Exploratory landscape analysis , 2011, GECCO '11.

[40]  Nikolaus Hansen,et al.  Invariance, Self-Adaptation and Correlated Mutations and Evolution Strategies , 2000, PPSN.

[41]  P. Stadler Landscapes and their correlation functions , 1996 .

[42]  Kate Smith-Miles,et al.  Cross-disciplinary perspectives on meta-learning for algorithm selection , 2009, CSUR.

[43]  D. M. Hutton,et al.  Handbook of Discrete and Combinatorial Mathematics , 2001 .

[44]  David H. Wolpert,et al.  What makes an optimization problem hard? , 1995, Complex..

[45]  J. Christopher Beck Principles and Practice of Constraint Programming , 2017, Lecture Notes in Computer Science.

[46]  Kate Smith-Miles,et al.  Measuring instance difficulty for combinatorial optimization problems , 2012, Comput. Oper. Res..

[47]  Toby Walsh,et al.  The TSP Phase Transition , 1996, Artif. Intell..

[48]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[49]  Werner Ebeling,et al.  The Density of States - A Measure of the Difficulty of Optimisation Problems , 1996, PPSN.

[50]  Thomas Bartz-Beielstein,et al.  Experimental Methods for the Analysis of Optimization Algorithms , 2010 .

[51]  Roberto Moreno-Díaz,et al.  Computer Aided Systems Theory EUROCAST 2005: 10th International Conference on Computer Aided Systems Theory, Las Palmas de Gran Canaria, Spain, February ... Papers (Lecture Notes in Computer Science) , 2005 .

[52]  Daniel Kudenko,et al.  An Analysis of Problem Difficulty for a Class of Optimisation Heuristics , 2007, EvoCOP.

[53]  N. Hansen Invariance, Self-adaptation and Correlated Mutations in Evolution Strategies Invariance, Self-adaptation and Correlated Mutations in Evolution Strategies , 2000 .

[54]  Jano I. van Hemert,et al.  Property Analysis of Symmetric Travelling Salesman Problem Instances Acquired Through Evolution , 2005, EvoCOP.

[55]  Riccardo Poli,et al.  Kolmogorov complexity, Optimization and Hardness , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[56]  Andries Petrus Engelbrecht,et al.  Quantifying ruggedness of continuous landscapes using entropy , 2009, 2009 IEEE Congress on Evolutionary Computation.

[57]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[58]  Kenneth H. Rosen Handbook of Discrete and Combinatorial Mathematics , 1999 .

[59]  Steve R. White,et al.  Configuration Space Analysis for Optimization Problems , 1986 .

[60]  Bruce J. West,et al.  Lévy dynamics of enhanced diffusion: Application to turbulence. , 1987, Physical review letters.

[61]  L. Darrell Whitley,et al.  The dispersion metric and the CMA evolution strategy , 2006, GECCO.

[62]  Marcus Gallagher,et al.  Length Scale for Characterising Continuous Optimization Problems , 2012, PPSN.

[63]  Yaroslav D. Sergeyev,et al.  Lipschitz Global Optimization , 2011 .

[64]  Andrew Wirth,et al.  Information Theoretic Classification of Problems for Metaheuristics , 2008, SEAL.

[65]  Charles M. Grinstead,et al.  Introduction to probability , 1986, Statistics for the Behavioural Sciences.

[66]  Marcus Gallagher,et al.  Multi-layer Perceptron Error Surfaces: Visualization, Structure and Modelling , 2000 .

[67]  Christian L. Müller,et al.  Particle Swarm CMA Evolution Strategy for the optimization of multi-funnel landscapes , 2009, 2009 IEEE Congress on Evolutionary Computation.

[68]  Mario A. Muñoz,et al.  Landscape characterization of numerical optimization problems using biased scattered data , 2012, 2012 IEEE Congress on Evolutionary Computation.

[69]  Andy J. Keane,et al.  Engineering Design via Surrogate Modelling - A Practical Guide , 2008 .

[70]  Mario A. Muñoz,et al.  A Meta-learning Prediction Model of Algorithm Performance for Continuous Optimization Problems , 2012, PPSN.

[71]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .