Quantum-Inspired Classical Algorithms for Singular Value Transformation
暂无分享,去创建一个
[1] H. Weyl. Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) , 1912 .
[2] Santosh Vempala,et al. Randomized algorithms in numerical linear algebra , 2017, Acta Numerica.
[3] Jacob biamonte,et al. Quantum machine learning , 2016, Nature.
[4] Stacey Jeffery,et al. The power of block-encoded matrix powers: improved regression techniques via faster Hamiltonian simulation , 2018, ICALP.
[5] Tongyang Li,et al. Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing Quantum machine learning , 2019, STOC.
[6] Andrew M. Childs,et al. Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..
[7] B. D. Clader,et al. Preconditioned quantum linear system algorithm. , 2013, Physical review letters.
[8] A. Harrow,et al. Quantum algorithm for linear systems of equations. , 2008, Physical review letters.
[9] Seth Lloyd,et al. Quantum-inspired algorithms in practice , 2019, Quantum.
[10] Aram W. Harrow,et al. Quantum algorithm for solving linear systems of equations , 2010 .
[11] Andris Ambainis,et al. Variable time amplitude amplification and quantum algorithms for linear algebra problems , 2012, STACS.
[12] Seth Lloyd,et al. Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension , 2018, ArXiv.
[13] Ewin Tang,et al. Quantum-inspired classical algorithms for principal component analysis and supervised clustering , 2018, ArXiv.
[14] S. Lloyd,et al. Quantum principal component analysis , 2013, Nature Physics.
[15] L. Wossnig,et al. Quantum Linear System Algorithm for Dense Matrices. , 2017, Physical review letters.
[16] Chunhao Wang,et al. Quantum-inspired sublinear classical algorithms for solving low-rank linear systems , 2018, ArXiv.
[17] Iordanis Kerenidis,et al. Quantum Recommendation Systems , 2016, ITCS.
[18] Nathan Wiebe,et al. Quantum singular value transformation and beyond: exponential improvements for quantum matrix arithmetics , 2018, STOC.
[19] Ewin Tang,et al. A quantum-inspired classical algorithm for recommendation systems , 2018, Electron. Colloquium Comput. Complex..
[20] Michael I. Gil. PERTURBATIONS OF FUNCTIONS OF DIAGONALIZABLE MATRICES , 2010 .
[21] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.